Unterrichtsstunde Mathematik: Die Fläche zwischen zwei Funktionsgraphen

Nonfiction, Reference & Language, Education & Teaching, Teaching, Teaching Methods
Cover of the book Unterrichtsstunde Mathematik: Die Fläche zwischen zwei Funktionsgraphen by Robert Leuck, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Robert Leuck ISBN: 9783640528813
Publisher: GRIN Verlag Publication: February 5, 2010
Imprint: GRIN Verlag Language: German
Author: Robert Leuck
ISBN: 9783640528813
Publisher: GRIN Verlag
Publication: February 5, 2010
Imprint: GRIN Verlag
Language: German

Unterrichtsentwurf aus dem Jahr 2005 im Fachbereich Mathematik - Didaktik, Note: o.B., Humboldt-Universität zu Berlin (Mathematik), Sprache: Deutsch, Abstract: Einordnung des Themas Das Thema 'Die Fläche zwischen zwei Funktionsgraphen' ist dem Rahmenplanthema 'Einführung in die Integralrechnung' für die Jahrgangsstufe 12 zuzuordnen. Die Wahl des Themas ist jedoch nicht allein durch den Rahmenplan gerechtfertigt, sie lässt sich auch durch den hohen Anwendungs- und Praxisbezug legitimieren. Die Kenntnis zur Berechnung von Flächeninhalten wird in vielen Bereichen benötigt, so lassen sich beispielsweise viele Größen unter anderem in der Physik, der Chemie, der Biologie, der Statistik, der Wirtschaft als Flächen interpretieren. Darüber hinaus ist das Thema in besonderem Maße dazu geeignet, ein Problemlöseverhalten bei den Schülern zu entwickeln und zu fördern. Die Schüler können insbesondere angeregt werden, mit früher Gelerntem (Begriffe, Regeln) selbständig umzugehen, das heißt, es in neuen Situationen anzuwenden beziehungsweise es zum Aufbau neuer Begriffe und Regeln zu benutzen. Vorkenntnisse der Schüler Im Rahmen der Unterrichtssequenz 'Einführung in die Integralrechnung' sollten die geometrische Definition des Integrals, die wichtigsten Grundintegrale und die einfachsten Rechenregeln (Faktorregel, Summenregel, Integraladditivität) erarbeitet worden sein. Dadurch wird es möglich, Integrale für ganzrationale Funktionen als Integralfunktion bis höchstens 3. Grades zu berechnen und diese Kenntnisse beim Berechnen von Flächeninhalten von Flächen zwischen der x-Achse und dem Graphen einer Funktion anzuwenden. Die Berechnung von Flächeninhalten zwischen den Graphen zweier Funktionen, die im didaktischen Zentrum dieser Stunde steht, baut auf diese Vorkenntnisse der Schüler auf und setzt die systematische Betrachtung fort. Dieses strukturierte Vorgehen fördert dabei insbesondere auch das Lernen in Zusammenhängen (Integrationsprinzip).

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Unterrichtsentwurf aus dem Jahr 2005 im Fachbereich Mathematik - Didaktik, Note: o.B., Humboldt-Universität zu Berlin (Mathematik), Sprache: Deutsch, Abstract: Einordnung des Themas Das Thema 'Die Fläche zwischen zwei Funktionsgraphen' ist dem Rahmenplanthema 'Einführung in die Integralrechnung' für die Jahrgangsstufe 12 zuzuordnen. Die Wahl des Themas ist jedoch nicht allein durch den Rahmenplan gerechtfertigt, sie lässt sich auch durch den hohen Anwendungs- und Praxisbezug legitimieren. Die Kenntnis zur Berechnung von Flächeninhalten wird in vielen Bereichen benötigt, so lassen sich beispielsweise viele Größen unter anderem in der Physik, der Chemie, der Biologie, der Statistik, der Wirtschaft als Flächen interpretieren. Darüber hinaus ist das Thema in besonderem Maße dazu geeignet, ein Problemlöseverhalten bei den Schülern zu entwickeln und zu fördern. Die Schüler können insbesondere angeregt werden, mit früher Gelerntem (Begriffe, Regeln) selbständig umzugehen, das heißt, es in neuen Situationen anzuwenden beziehungsweise es zum Aufbau neuer Begriffe und Regeln zu benutzen. Vorkenntnisse der Schüler Im Rahmen der Unterrichtssequenz 'Einführung in die Integralrechnung' sollten die geometrische Definition des Integrals, die wichtigsten Grundintegrale und die einfachsten Rechenregeln (Faktorregel, Summenregel, Integraladditivität) erarbeitet worden sein. Dadurch wird es möglich, Integrale für ganzrationale Funktionen als Integralfunktion bis höchstens 3. Grades zu berechnen und diese Kenntnisse beim Berechnen von Flächeninhalten von Flächen zwischen der x-Achse und dem Graphen einer Funktion anzuwenden. Die Berechnung von Flächeninhalten zwischen den Graphen zweier Funktionen, die im didaktischen Zentrum dieser Stunde steht, baut auf diese Vorkenntnisse der Schüler auf und setzt die systematische Betrachtung fort. Dieses strukturierte Vorgehen fördert dabei insbesondere auch das Lernen in Zusammenhängen (Integrationsprinzip).

More books from GRIN Verlag

Cover of the book Vom Fremdbild zum Selbstbild - Die fotografische Repräsentation der Indigenen Mexikos by Robert Leuck
Cover of the book Dezentralisierungsstrategien in der deutschen Entwicklungspolitik am Beispiel der GTZ in Nicaragua by Robert Leuck
Cover of the book Preispolitik in der Hotellerie. Preisbildung, Preisdifferenzierung und Besonderheiten der Preispolitik by Robert Leuck
Cover of the book Planning Urban Growth by Robert Leuck
Cover of the book Das Gewicht der PISA-Studie by Robert Leuck
Cover of the book Führung- und Führungskontexte mit Blick auf die stationäre Jugend- und Heimerziehung by Robert Leuck
Cover of the book Testmethodik und Fragebogenkonstruktion - messmethodische Grundlagen by Robert Leuck
Cover of the book Die soziale Rolle der Trainer und Übungsleiter by Robert Leuck
Cover of the book Von der Großmutter zur Göttin. Zur Konsekration der Livia unter Claudius by Robert Leuck
Cover of the book Umsatzsteuerliche Rechtsfolgen des Reverse-Charge-Verfahrens by Robert Leuck
Cover of the book Von den Standardwerken des NOK für Deutschland zur modernen Schnellproduktion - Nationale Presse für Olympia: Das Olympische Feuer und der NOK-Report by Robert Leuck
Cover of the book Verbesserungspotenziale für Lieferservice und Logistikkosten durch die EU-Osterweiterung by Robert Leuck
Cover of the book Career Trends in Female Medical Students. A study at Allama Iqbal Medical College / Jinnah Hospital, Lahore by Robert Leuck
Cover of the book Ziele und Ansätze antirassistischer Bildungsarbeit mit Jugendlichen als Aufgabe Sozialer Arbeit by Robert Leuck
Cover of the book Qualität in Kindergärten by Robert Leuck
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy