Quaternionen und andere Zahlbereiche. Was kommt nach den komplexen Zahlen?

Was kommt nach den komplexen Zahlen?

Nonfiction, Science & Nature, Mathematics, Number Theory
Cover of the book Quaternionen und andere Zahlbereiche. Was kommt nach den komplexen Zahlen? by Bastian Vincken, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Bastian Vincken ISBN: 9783638328708
Publisher: GRIN Verlag Publication: November 29, 2004
Imprint: GRIN Verlag Language: German
Author: Bastian Vincken
ISBN: 9783638328708
Publisher: GRIN Verlag
Publication: November 29, 2004
Imprint: GRIN Verlag
Language: German

Examensarbeit aus dem Jahr 2004 im Fachbereich Mathematik - Zahlentheorie, Note: 1,3, Rheinisch-Westfälische Technische Hochschule Aachen (Lehrstuhl A für Mathematik), 23 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Das traditionelle Zahlensystem gilt als wichtigste Grundlage in der Mathematik. Der Aufbau dieses Zahlensystems beginnt seit dem Ende des 19. Jahrhunderts bei den natürlichen Zahlen. Diese werden dann schrittweise zu den ganzen, den rationalen, den reellen bis hin zu den komplexen Zahlen erweitert. Die Schulmathematik umfasst im besten Fall das Zahlensystem bis hin zu den komplexen Zahlen. In dieser Arbeit wollen wir uns mit der Frage beschäftigen, ob es jenseits der komplexen Zahlen noch andere Zahlbereiche zu konstruieren gibt und inwieweit diese noch sinnvoll sind. Diese hyperkomplexen Zahlbereiche werden seit Beginn des 20. Jahrhunderts reelle Algebren genannt. Möchte man sich analog zu den komplexen Zahlen, die einen zweidimensionalen reellen Vektorraum bilden, höherdimensionale reelle Vektorräume zu hyperkomplexen Zahlbereichen machen, muss man entweder die Endlichkeit der Dimension aufgeben oder aber auf vertraute Körperaxiome wie die der Kommutativität oder der Assoziativität oder gar auf die Möglichkeit der Division verzichten. In dieser Arbeit werden wir uns auf die endlichdimensionalen Divisionsalgebren beschränken. Dies bedeutet, dass wir an der Endlichkeit der Dimension und der Möglichkeit der Division festhalten werden. Sollten wir diese Eigenschaften aufgeben, so würden wir von einer Masse neuer Zahlbereiche erschlagen werden. Diese neuen Zahlbereiche werden Eigenschaften aufweisen, die uns auf den ersten Blick merkwürdig vorkommen. Der _Vollständigkeitssatz_ der reellen Zahlen beinhaltet vomWort her schon eine gewisse _Vollständigkeit_ des Zahlbereichs. Wir werden feststellen, dass, je weiter man sich von den reellen Zahlen entfernt, immer mehr uns vertraute Eigenschaften verloren gehen und in diesem Zusammenhang deutlich machen, welche Kuriositäten mit deren Wegfall einhergehen. Hamilton schuf im Jahre 1843, nachdem er die komplexen Zahlen als erster rein arithmetisch begründet hatte, den vierdimensionalen Schiefkörper H der Quaternionen. Kurz darauf konstruierten Graves und Cayley die achtdimensionale Divisionsalgebra O der Oktonionen. Die Quaternionen sind bezüglich der Multiplikation nicht mehr kommutativ und bei den Oktonionen ist zusätzlich noch die Assoziativität verletzt. Bei beiden Zahlbereichen ist jedoch die Division noch eindeutig ausführbar.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Examensarbeit aus dem Jahr 2004 im Fachbereich Mathematik - Zahlentheorie, Note: 1,3, Rheinisch-Westfälische Technische Hochschule Aachen (Lehrstuhl A für Mathematik), 23 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Das traditionelle Zahlensystem gilt als wichtigste Grundlage in der Mathematik. Der Aufbau dieses Zahlensystems beginnt seit dem Ende des 19. Jahrhunderts bei den natürlichen Zahlen. Diese werden dann schrittweise zu den ganzen, den rationalen, den reellen bis hin zu den komplexen Zahlen erweitert. Die Schulmathematik umfasst im besten Fall das Zahlensystem bis hin zu den komplexen Zahlen. In dieser Arbeit wollen wir uns mit der Frage beschäftigen, ob es jenseits der komplexen Zahlen noch andere Zahlbereiche zu konstruieren gibt und inwieweit diese noch sinnvoll sind. Diese hyperkomplexen Zahlbereiche werden seit Beginn des 20. Jahrhunderts reelle Algebren genannt. Möchte man sich analog zu den komplexen Zahlen, die einen zweidimensionalen reellen Vektorraum bilden, höherdimensionale reelle Vektorräume zu hyperkomplexen Zahlbereichen machen, muss man entweder die Endlichkeit der Dimension aufgeben oder aber auf vertraute Körperaxiome wie die der Kommutativität oder der Assoziativität oder gar auf die Möglichkeit der Division verzichten. In dieser Arbeit werden wir uns auf die endlichdimensionalen Divisionsalgebren beschränken. Dies bedeutet, dass wir an der Endlichkeit der Dimension und der Möglichkeit der Division festhalten werden. Sollten wir diese Eigenschaften aufgeben, so würden wir von einer Masse neuer Zahlbereiche erschlagen werden. Diese neuen Zahlbereiche werden Eigenschaften aufweisen, die uns auf den ersten Blick merkwürdig vorkommen. Der _Vollständigkeitssatz_ der reellen Zahlen beinhaltet vomWort her schon eine gewisse _Vollständigkeit_ des Zahlbereichs. Wir werden feststellen, dass, je weiter man sich von den reellen Zahlen entfernt, immer mehr uns vertraute Eigenschaften verloren gehen und in diesem Zusammenhang deutlich machen, welche Kuriositäten mit deren Wegfall einhergehen. Hamilton schuf im Jahre 1843, nachdem er die komplexen Zahlen als erster rein arithmetisch begründet hatte, den vierdimensionalen Schiefkörper H der Quaternionen. Kurz darauf konstruierten Graves und Cayley die achtdimensionale Divisionsalgebra O der Oktonionen. Die Quaternionen sind bezüglich der Multiplikation nicht mehr kommutativ und bei den Oktonionen ist zusätzlich noch die Assoziativität verletzt. Bei beiden Zahlbereichen ist jedoch die Division noch eindeutig ausführbar.

More books from GRIN Verlag

Cover of the book Über die Notwendigkeit einer Verantwortungsethik in der Pädagogik by Bastian Vincken
Cover of the book Supply Chain Management in der Computerindustrie by Bastian Vincken
Cover of the book Weltwirtschaftliche Konsequenzen der amerikanischen Geldpolitik 2008-2011 by Bastian Vincken
Cover of the book Kumulieren und Panaschieren by Bastian Vincken
Cover of the book Management - institutionales, funktionales und prozessuales Verständnis by Bastian Vincken
Cover of the book Project Portfolio Management in Philanthropic Organizations by Bastian Vincken
Cover of the book The concept of modernity in Moroccan press by Bastian Vincken
Cover of the book Schweden - Großunternehmerland by Bastian Vincken
Cover of the book Sozialstaat und Grundeinkommen by Bastian Vincken
Cover of the book Decolorization of Two Azo and Two Anthra- Quinone Dyes from the Dye Effluent using Tunic of Allium cepa derived activated carbon. The Response Surface Methodology by Bastian Vincken
Cover of the book LOLspeak Verb Semantics. Aspect and Situation Type Emphasis in a Weird English Dialect by Bastian Vincken
Cover of the book Der Kaukasus-Konflikt by Bastian Vincken
Cover of the book Die McDonaldisierung der Gesellschaft by Bastian Vincken
Cover of the book Die UN-Klimakonferenz auf Bali im Jahr 2007 in der Medienberichterstattung by Bastian Vincken
Cover of the book Globalisierung - Begriff, Theorien, Globalisierung und Probleme der Weltwirtschaft: Finanzmärkte by Bastian Vincken
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy