Extremal Polynomials and Riemann Surfaces

Nonfiction, Science & Nature, Mathematics, Number Systems, Mathematical Analysis
Cover of the book Extremal Polynomials and Riemann Surfaces by Andrei Bogatyrev, Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Andrei Bogatyrev ISBN: 9783642256349
Publisher: Springer Berlin Heidelberg Publication: May 31, 2012
Imprint: Springer Language: English
Author: Andrei Bogatyrev
ISBN: 9783642256349
Publisher: Springer Berlin Heidelberg
Publication: May 31, 2012
Imprint: Springer
Language: English

The problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev's approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmüller theory, foliations, braids, topology are applied to  approximation problems.  

The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books  where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.​

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev's approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmüller theory, foliations, braids, topology are applied to  approximation problems.  

The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books  where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.​

More books from Springer Berlin Heidelberg

Cover of the book The Knee and the Cruciate Ligaments by Andrei Bogatyrev
Cover of the book Lignocellulose Conversion by Andrei Bogatyrev
Cover of the book Transformation and Utilization of Carbon Dioxide by Andrei Bogatyrev
Cover of the book The Microstructural Border Between the Motor and the Cognitive Domain in the Human Cerebral Cortex by Andrei Bogatyrev
Cover of the book Aussage gegen Aussage in sexuellen Missbrauchsverfahren by Andrei Bogatyrev
Cover of the book Methodische Entwicklung modularer Produktfamilien by Andrei Bogatyrev
Cover of the book Remote Sensing of Soils by Andrei Bogatyrev
Cover of the book Global Administrative Law and EU Administrative Law by Andrei Bogatyrev
Cover of the book Außenhandel by Andrei Bogatyrev
Cover of the book Volkswirtschaftslehre by Andrei Bogatyrev
Cover of the book Ergänzungen und Vertiefungen zu Arens et al., Mathematik by Andrei Bogatyrev
Cover of the book Microfacies Analysis of Limestones by Andrei Bogatyrev
Cover of the book Combinations of Intelligent Methods and Applications by Andrei Bogatyrev
Cover of the book Mental Health in the Elderly by Andrei Bogatyrev
Cover of the book Human Mast Cells by Andrei Bogatyrev
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy