Lignocellulose Conversion

Enzymatic and Microbial Tools for Bioethanol Production

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Microbiology
Cover of the book Lignocellulose Conversion by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642378614
Publisher: Springer Berlin Heidelberg Publication: June 12, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783642378614
Publisher: Springer Berlin Heidelberg
Publication: June 12, 2013
Imprint: Springer
Language: English

Bioethanol has been recognized as a potential alternative to petroleum-derived transportation fuels. Even if cellulosic biomass is less expensive than corn and sugarcane, the higher costs for its conversion make the near-term price of cellulosic ethanol higher than that of corn ethanol and even more than that of sugarcane ethanol. Conventional process for bioethanol production from lignocellulose includes a chemical/physical pre-treatment of lignocellulose for lignin removal, mostly based on auto hydrolysis and acid hydrolysis, followed by saccharification of the free accessible cellulose portions of the biomass. The highest yields of fermentable sugars from cellulose portion are achieved by means of enzymatic hydrolysis, currently carried out using a mix of cellulases from the fungus Trichoderma reesei. Reduction of (hemi)cellulases production costs is strongly required to increase competitiveness of second generation bioethanol production. The final step is the fermentation of sugars obtained from saccharification, typically performed by the yeast Saccharomyces cerevisiae. The current process is optimized for 6-carbon sugars fermentation, since most of yeasts cannot ferment 5-carbon sugars. Thus, research is aimed at exploring new engineered yeasts abilities to co-ferment 5- and 6-carbon sugars. Among the main routes to advance cellulosic ethanol, consolidate bio-processing, namely direct conversion of biomass into ethanol by a genetically modified microbes, holds tremendous potential to reduce ethanol production costs.   Finally, the use of all the components of lignocellulose to produce a large spectra of biobased products is another challenge for further improving competitiveness of second generation bioethanol production, developing a biorefinery. 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Bioethanol has been recognized as a potential alternative to petroleum-derived transportation fuels. Even if cellulosic biomass is less expensive than corn and sugarcane, the higher costs for its conversion make the near-term price of cellulosic ethanol higher than that of corn ethanol and even more than that of sugarcane ethanol. Conventional process for bioethanol production from lignocellulose includes a chemical/physical pre-treatment of lignocellulose for lignin removal, mostly based on auto hydrolysis and acid hydrolysis, followed by saccharification of the free accessible cellulose portions of the biomass. The highest yields of fermentable sugars from cellulose portion are achieved by means of enzymatic hydrolysis, currently carried out using a mix of cellulases from the fungus Trichoderma reesei. Reduction of (hemi)cellulases production costs is strongly required to increase competitiveness of second generation bioethanol production. The final step is the fermentation of sugars obtained from saccharification, typically performed by the yeast Saccharomyces cerevisiae. The current process is optimized for 6-carbon sugars fermentation, since most of yeasts cannot ferment 5-carbon sugars. Thus, research is aimed at exploring new engineered yeasts abilities to co-ferment 5- and 6-carbon sugars. Among the main routes to advance cellulosic ethanol, consolidate bio-processing, namely direct conversion of biomass into ethanol by a genetically modified microbes, holds tremendous potential to reduce ethanol production costs.   Finally, the use of all the components of lignocellulose to produce a large spectra of biobased products is another challenge for further improving competitiveness of second generation bioethanol production, developing a biorefinery. 

More books from Springer Berlin Heidelberg

Cover of the book Multiple Sclerosis by
Cover of the book Greece's Horizons by
Cover of the book Psychopharmacoendocrinology and Depression Research by
Cover of the book Symbolic Action Theory and Cultural Psychology by
Cover of the book The Cartilaginous Skeleton of the Bronchial Tree by
Cover of the book Usability und UX kompakt by
Cover of the book Ecosystem Services and Management Strategy in China by
Cover of the book Geodesy for Planet Earth by
Cover of the book Handling Societal Complexity by
Cover of the book Durability of Building Materials and Components by
Cover of the book Relativer Quantenquark by
Cover of the book Einführung in Eis-, Schnee- und Lawinenmechanik by
Cover of the book Breast Ultrasound by
Cover of the book Fundamentals of Roman Private Law by
Cover of the book Klüger irren - Denkfallen vermeiden mit System by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy