Latent Semantic Indexing (LSI) - ein kurzer Überblick

ein kurzer Überblick

Business & Finance, Industries & Professions, Information Management
Cover of the book Latent Semantic Indexing (LSI) - ein kurzer Überblick by Irene Götz, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Irene Götz ISBN: 9783638252065
Publisher: GRIN Verlag Publication: February 7, 2004
Imprint: GRIN Verlag Language: German
Author: Irene Götz
ISBN: 9783638252065
Publisher: GRIN Verlag
Publication: February 7, 2004
Imprint: GRIN Verlag
Language: German

Studienarbeit aus dem Jahr 2001 im Fachbereich Informationswissenschaften, Informationsmanagement, Note: 2,0, Universität Hildesheim (Stiftung) (Angewandte Sprachwissenschaft), Veranstaltung: Virtuelles Hauptseminar, Sprache: Deutsch, Abstract: Bei dieser Retrieval-Methode werden in einem n -dimensionalen Raum A nfragen und Dokumente in Form von Vektoren repräsentiert, wobei jeder Suchbegriff eine Dimension darstellt. Die gefundenen Dokumente werden aufgrund ihrer Deskriptoren als Vektoren in den Raum eingeordnet, ihre Position im R aum bezeichnet ihre Relevanz. Messbar wird die Ähnlichkeit zwischen Anfrage und Dokument anhand des Cosinus- Winkels zwischen Anfrage- und Dokumentvektor: Je kleiner das Cosinus-Maß des Winkels zwischen Anfrage und Dokument, desto größer die Ähnlichkeit zwischen Dokument und Anfrage. Die Vektor-Retrieval-Methode ist weit verbreitet, hat jedoch den Nachteil, dass sie Terme als voneinander unabhängig betrachtet. Wie bei den anderen 'klassischen' Retrieval-Techniken (Boolsches Retrieval, probabilistisches Retrieval, vgl. http://www.iud.fh-darmstadt.de/iud/wwwmeth/LV/ss97/wpai/grpTexte/textgr2.htm#Heading26) werden exakte Übereinstimmungen zwischen in der Anfrage enthaltenen und in den Dokumenten verwendeten Termen, unabhängig vom Kontext, in dem sie gebraucht werden gesucht. Diese Technik ist in der Hinsicht problematisch, dass es z.B. für ein und dieselbe Sache oft verschiedene Bezeichnungen gibt, und somit relevante Dokumente oft nicht ausgegeben werden, weil im Dokument eine andere Bezeichnung als in der Anfrage verwendet wurde. Hier setzt Latent Semantic Indexing an: Dokumente werden aufgrund von Wort-Assoziationen und kontextue llen Zusammenhängen indexiert, sodass auch relevante Dokumente, die mit der Anfrage keine Wörter gemeinsam haben gefunden werden.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Studienarbeit aus dem Jahr 2001 im Fachbereich Informationswissenschaften, Informationsmanagement, Note: 2,0, Universität Hildesheim (Stiftung) (Angewandte Sprachwissenschaft), Veranstaltung: Virtuelles Hauptseminar, Sprache: Deutsch, Abstract: Bei dieser Retrieval-Methode werden in einem n -dimensionalen Raum A nfragen und Dokumente in Form von Vektoren repräsentiert, wobei jeder Suchbegriff eine Dimension darstellt. Die gefundenen Dokumente werden aufgrund ihrer Deskriptoren als Vektoren in den Raum eingeordnet, ihre Position im R aum bezeichnet ihre Relevanz. Messbar wird die Ähnlichkeit zwischen Anfrage und Dokument anhand des Cosinus- Winkels zwischen Anfrage- und Dokumentvektor: Je kleiner das Cosinus-Maß des Winkels zwischen Anfrage und Dokument, desto größer die Ähnlichkeit zwischen Dokument und Anfrage. Die Vektor-Retrieval-Methode ist weit verbreitet, hat jedoch den Nachteil, dass sie Terme als voneinander unabhängig betrachtet. Wie bei den anderen 'klassischen' Retrieval-Techniken (Boolsches Retrieval, probabilistisches Retrieval, vgl. http://www.iud.fh-darmstadt.de/iud/wwwmeth/LV/ss97/wpai/grpTexte/textgr2.htm#Heading26) werden exakte Übereinstimmungen zwischen in der Anfrage enthaltenen und in den Dokumenten verwendeten Termen, unabhängig vom Kontext, in dem sie gebraucht werden gesucht. Diese Technik ist in der Hinsicht problematisch, dass es z.B. für ein und dieselbe Sache oft verschiedene Bezeichnungen gibt, und somit relevante Dokumente oft nicht ausgegeben werden, weil im Dokument eine andere Bezeichnung als in der Anfrage verwendet wurde. Hier setzt Latent Semantic Indexing an: Dokumente werden aufgrund von Wort-Assoziationen und kontextue llen Zusammenhängen indexiert, sodass auch relevante Dokumente, die mit der Anfrage keine Wörter gemeinsam haben gefunden werden.

More books from GRIN Verlag

Cover of the book Stalking gegen (Ex-)Partner am Arbeitsplatz by Irene Götz
Cover of the book Die Entwicklung der Weiterbildungsstrukturen in der BRD seit 1945 by Irene Götz
Cover of the book Mediale Zugangsarten zur NS-Vergangenheit und ihre Rezeption in Deutschland (am Beispiel 'Schindlers Liste') by Irene Götz
Cover of the book Raskolnikows Behausungen - Das Interieur im Roman 'Schuld und Sühne' von Fedor Dostojewskij by Irene Götz
Cover of the book Aelia Flavia Flacilla Augusta by Irene Götz
Cover of the book Das Recht der Frauen auf Erwerb. Die Geschichte von 150 Jahren Frauenerwerbsfrage by Irene Götz
Cover of the book Die Umsetzung der Streetwork am Beispiel der Drogen- und Stricherarbeit by Irene Götz
Cover of the book Europas Antworten zur Rettung Griechenlands und des Euro: EFSM, EFSF und ESM - ein Überblick by Irene Götz
Cover of the book Die Geschichte Namibias von der Frühzeit bis heute by Irene Götz
Cover of the book Die zunehmende Bedeutung des Geschäftstourismus unter besonderer Berücksichtigung der Incentive-Reise by Irene Götz
Cover of the book Zivilreligion und das Konzept des Laizismus am Beispiel der Türkei by Irene Götz
Cover of the book Investor Relations - Von der Bilanzpressekonferenz zur Hauptversammlung einer Publikums-AG by Irene Götz
Cover of the book Versuch und Rücktritt - Die Strafbarkeit des untauglichen Versuchs und deren Abgrenzung zum Wahndelikt by Irene Götz
Cover of the book Die ACCADEMIA DEI LINCEI Wissenschaft im Spannungsfeld kirchlicher und politischer Macht by Irene Götz
Cover of the book Das aristotelische Demokratieverständnis by Irene Götz
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy