Einführung Addition Subtraktion

Nonfiction, Science & Nature, Mathematics, Algebra
Cover of the book Einführung Addition Subtraktion by Manuela Ickler, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Manuela Ickler ISBN: 9783638390095
Publisher: GRIN Verlag Publication: June 23, 2005
Imprint: GRIN Verlag Language: German
Author: Manuela Ickler
ISBN: 9783638390095
Publisher: GRIN Verlag
Publication: June 23, 2005
Imprint: GRIN Verlag
Language: German

Studienarbeit aus dem Jahr 2004 im Fachbereich Mathematik - Algebra, Note: anerkannt (keine Note), Universität zu Köln (Heilpädagogische Fakultät Köln), Veranstaltung: Mathematik an der Schule für Lernbehinderte, 4 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Zum Einstieg möchte ich auf eine grundlegende Fragestellung hinweisen, die sich bei jeder Einführung in eine neue Rechenart ergibt. Die Lehrperson muss sich entscheiden, ob er zur Einführung ein Normalverfahren verwendet oder den Schülern die Freiheit gibt, eigene Lösungswege zu entdecken. Für das Normalverfahren plädierte Büttner 1910 mit folgenden Worten: 'Es gibt bei jeder Rechnungsart ein Verfahren, das immer zum Ziel führt, ganz unabhängig von der zufälligen Beschaffenheit der Zahlen. Wir nennen es das Normalverfahren. Auch wo dem Lehrer verschiedene Wege gangbar erscheinen, muss er sich für einen derselben entscheiden. Es wäre verkehrt bei der ersten Einführung in eine neue Rechenart gleich die ersten Aufgaben auf möglichst verschiedene Weise lösen zu lassen (...)' (zit. nach Lauter 1991). Büttner ist also der Auffassung, der richtige Weg sei es, den Schülern ein Verfahren zu vermitteln, das sicher zum Erfolg führt. Wenn der Schüler dieses Normalverfahren beherrscht, kann der Lehrer ihn auf andere Lösungswege als Alternativen hinweisen. Damit will Büttner sicherstellen, dass jeder Schüler das Handwerkszeug besitzt, eine Aufgabe richtig zu lösen. Demgegenüber steht die Möglichkeit der eigenen Lösungswege, die 1919 von Kühnel vertreten wurde. 'Wir wollen kein Normalverfahren den Kindern aufnötigen. Nicht darauf kommt es an, dass das Kind einen bestimmten Weg gehen lernt (...), sondern dass es seinen Weg allein zu suchen und zu finden weiß. (...)' (zit. nach Lauter 1991). Die Vertreter dieses Weges sind der Meinung, dass man den Bedürfnissen, den Lernvoraussetzungen und den individuellen Denkweisen der Schüler nicht gerecht wird, indem man jedem von ihnen das gleiche Verfahren versucht zu vermitteln. Stattdessen treten sie dafür ein, dass der Lehrer den Schülern die Chance bietet, sich auf ihren eigenen Wegen mit dem Lernstoff und dem Problem auseinander zu setzen. So sollen die Schüler zu einer zu ihnen passenden Einsicht in die Strukturen und Lösungsmöglichkeiten gelangen. Hat der Lerner schließlich das Problem erkannt und seinen Aufbau entschlüsselt, erst dann stellt der Lehrer das Normalverfahren zur Verfügung. Zu diesem Zeitpunkt sind die Schüler so weit, dass sie dieses Verfahren verstehen und seine Vorteile gegenüber ihren eigenen gewählten Lösungswegen erkennen können. Nach Kühnel werden die Schüler auf Grund dieses Einsehens dann das Normalverfahren von sich anwenden und als Lösungsstrategie verwenden.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Studienarbeit aus dem Jahr 2004 im Fachbereich Mathematik - Algebra, Note: anerkannt (keine Note), Universität zu Köln (Heilpädagogische Fakultät Köln), Veranstaltung: Mathematik an der Schule für Lernbehinderte, 4 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Zum Einstieg möchte ich auf eine grundlegende Fragestellung hinweisen, die sich bei jeder Einführung in eine neue Rechenart ergibt. Die Lehrperson muss sich entscheiden, ob er zur Einführung ein Normalverfahren verwendet oder den Schülern die Freiheit gibt, eigene Lösungswege zu entdecken. Für das Normalverfahren plädierte Büttner 1910 mit folgenden Worten: 'Es gibt bei jeder Rechnungsart ein Verfahren, das immer zum Ziel führt, ganz unabhängig von der zufälligen Beschaffenheit der Zahlen. Wir nennen es das Normalverfahren. Auch wo dem Lehrer verschiedene Wege gangbar erscheinen, muss er sich für einen derselben entscheiden. Es wäre verkehrt bei der ersten Einführung in eine neue Rechenart gleich die ersten Aufgaben auf möglichst verschiedene Weise lösen zu lassen (...)' (zit. nach Lauter 1991). Büttner ist also der Auffassung, der richtige Weg sei es, den Schülern ein Verfahren zu vermitteln, das sicher zum Erfolg führt. Wenn der Schüler dieses Normalverfahren beherrscht, kann der Lehrer ihn auf andere Lösungswege als Alternativen hinweisen. Damit will Büttner sicherstellen, dass jeder Schüler das Handwerkszeug besitzt, eine Aufgabe richtig zu lösen. Demgegenüber steht die Möglichkeit der eigenen Lösungswege, die 1919 von Kühnel vertreten wurde. 'Wir wollen kein Normalverfahren den Kindern aufnötigen. Nicht darauf kommt es an, dass das Kind einen bestimmten Weg gehen lernt (...), sondern dass es seinen Weg allein zu suchen und zu finden weiß. (...)' (zit. nach Lauter 1991). Die Vertreter dieses Weges sind der Meinung, dass man den Bedürfnissen, den Lernvoraussetzungen und den individuellen Denkweisen der Schüler nicht gerecht wird, indem man jedem von ihnen das gleiche Verfahren versucht zu vermitteln. Stattdessen treten sie dafür ein, dass der Lehrer den Schülern die Chance bietet, sich auf ihren eigenen Wegen mit dem Lernstoff und dem Problem auseinander zu setzen. So sollen die Schüler zu einer zu ihnen passenden Einsicht in die Strukturen und Lösungsmöglichkeiten gelangen. Hat der Lerner schließlich das Problem erkannt und seinen Aufbau entschlüsselt, erst dann stellt der Lehrer das Normalverfahren zur Verfügung. Zu diesem Zeitpunkt sind die Schüler so weit, dass sie dieses Verfahren verstehen und seine Vorteile gegenüber ihren eigenen gewählten Lösungswegen erkennen können. Nach Kühnel werden die Schüler auf Grund dieses Einsehens dann das Normalverfahren von sich anwenden und als Lösungsstrategie verwenden.

More books from GRIN Verlag

Cover of the book Ziele und Instrumente des After Sales Service by Manuela Ickler
Cover of the book Identität und Symbol - Symbol und Identität by Manuela Ickler
Cover of the book Opportunities and Risks of the Proposed Referendum on United Kingdom's Membership in the EU (BREXIT) by Manuela Ickler
Cover of the book Marken- und wettbewerbsrechtliche Unterlassungsansprüche by Manuela Ickler
Cover of the book Sozialwissenschaftliche Theorien des Alterns by Manuela Ickler
Cover of the book Einsatz ionischer Fluide als Katalysator in der homogenen Reaktivdestillation unter Berücksichtigung reaktionskinetischer Aspekte by Manuela Ickler
Cover of the book Sozialwissenschaftliche Beiträge zur Erklärung jugendlicher Gewaltbereitschaft - Ein Vergleich empirischer Studien und ihrer Erklärungsansätze by Manuela Ickler
Cover of the book Der US-amerikanisch-philippinische Krieg by Manuela Ickler
Cover of the book Einführung in die Entscheidungstheorie by Manuela Ickler
Cover of the book Burnout - Causes and prevention by Manuela Ickler
Cover of the book Nacherfüllungspflicht bei unverhältnismäßigen Kosten im Rahmen des Verbrauchsgüterkaufs by Manuela Ickler
Cover of the book Die neue Generation von Bildungsprogrammen der EU by Manuela Ickler
Cover of the book Analyse der Sportartikelindustrie. Begriffsdefinition, Unternehmensanalyse und der Sportartikelmarkt by Manuela Ickler
Cover of the book An Anatomy of Mind. Being Essence of the Dhammasangani in Abhidhamma by Manuela Ickler
Cover of the book Behaviorismus, Kognitivismus und Konstruktivismus. Lehr- und Lerntheorien by Manuela Ickler
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy