Beschreibung einer Unterrichtseinheit zur Konstruktion eines Ellipsoid-Modells

Nonfiction, Reference & Language, Education & Teaching, Teaching, Teaching Methods
Cover of the book Beschreibung einer Unterrichtseinheit zur Konstruktion eines Ellipsoid-Modells by Christian Scheuermann, Thomas Schrowe, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Christian Scheuermann, Thomas Schrowe ISBN: 9783638259620
Publisher: GRIN Verlag Publication: March 9, 2004
Imprint: GRIN Verlag Language: German
Author: Christian Scheuermann, Thomas Schrowe
ISBN: 9783638259620
Publisher: GRIN Verlag
Publication: March 9, 2004
Imprint: GRIN Verlag
Language: German

Unterrichtsentwurf aus dem Jahr 2003 im Fachbereich Mathematik - Didaktik, Note: sehr gut (1), Martin-Luther-Universität Halle-Wittenberg (Didaktik der Mathematik), Veranstaltung: Seminar zur Mathematik-Didaktik, Sprache: Deutsch, Abstract: 1.1. Zielstellung Das Ziel dieser Unterrichtseinheit ist es, zu wissen, wie eine Ellipse konstruiert wird, wo sie vorkommt und wie daraus ein Ellipsoid wird. Weiter soll ein selbstüberlegtes Modell des Ellipsoids konstruiert und gebastelt werden. 1.2. Voraussetzungen Wir wollen diese Unterrichtseinheit an die Behandlung des Kreises der Klasse 6 oder 7 ansetzen, d.h. funktionale Zusammenhänge sind hier noch nicht zu betrachten. 1.3. Grobstruktur der Unterrichtseinheit Wir wollen von einer etwas ungewöhnlichen Konstruktion eines Kreises zu der einer Ellipse übergehen und diese noch als schrägen Kegelschnitt darstellen. Nachdem dann die wichtigsten Eigenschaften einer Ellipse besprochen wurden, werden wir den Ellipsoid als Körper der rotierenden Ellipse einführen und versuchen ein Modell zu entwickeln und dann letztendlich zu basteln. 2. Sachanalyse 2.1. Die Ellipse Eine Ellipse lässt sich als Schrägbild eines Kreises darstellen. Da solche Schrägbilder mithilfe von Parallelprojektionen aus Kreisen entstehen, erhält man die folgende Definition. Definition 11: Als Ellipse bezeichnet man jede Parallelprojektion eines Kreises. Bei einer axialen Stauchung oder Streckung eines Kreises entsteht ebenso eine Ellipse. Die Ellipse hier kann als das Bild eines Kreises mit dem Radius a oder als das Bild eines Kreises mit dem Radius b aufgefasst werden. Dies liefert die folgende Ellipsenkonstruktion: Man zeichnet einen Strahl vom Mittelpunkt der beiden Kreise. Nun zeichnet man durch den Schnittpunkt dieses Strahls mit dem kleinen Kreis eine Horizontale und durch den mit dem großen Kreis eine Vertikale. Der Schnittpunkt dieser Horizontalen und Vertikalen ist dann ein Punkt der Ellipse. Hieraus entsteht die nächste Definition einer Ellipse. Definition 21: Eine Ellipse ist das Bild eines Kreises bei einer affinen Abbildung. 1 Vgl: SCHEID, Seite 134

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Unterrichtsentwurf aus dem Jahr 2003 im Fachbereich Mathematik - Didaktik, Note: sehr gut (1), Martin-Luther-Universität Halle-Wittenberg (Didaktik der Mathematik), Veranstaltung: Seminar zur Mathematik-Didaktik, Sprache: Deutsch, Abstract: 1.1. Zielstellung Das Ziel dieser Unterrichtseinheit ist es, zu wissen, wie eine Ellipse konstruiert wird, wo sie vorkommt und wie daraus ein Ellipsoid wird. Weiter soll ein selbstüberlegtes Modell des Ellipsoids konstruiert und gebastelt werden. 1.2. Voraussetzungen Wir wollen diese Unterrichtseinheit an die Behandlung des Kreises der Klasse 6 oder 7 ansetzen, d.h. funktionale Zusammenhänge sind hier noch nicht zu betrachten. 1.3. Grobstruktur der Unterrichtseinheit Wir wollen von einer etwas ungewöhnlichen Konstruktion eines Kreises zu der einer Ellipse übergehen und diese noch als schrägen Kegelschnitt darstellen. Nachdem dann die wichtigsten Eigenschaften einer Ellipse besprochen wurden, werden wir den Ellipsoid als Körper der rotierenden Ellipse einführen und versuchen ein Modell zu entwickeln und dann letztendlich zu basteln. 2. Sachanalyse 2.1. Die Ellipse Eine Ellipse lässt sich als Schrägbild eines Kreises darstellen. Da solche Schrägbilder mithilfe von Parallelprojektionen aus Kreisen entstehen, erhält man die folgende Definition. Definition 11: Als Ellipse bezeichnet man jede Parallelprojektion eines Kreises. Bei einer axialen Stauchung oder Streckung eines Kreises entsteht ebenso eine Ellipse. Die Ellipse hier kann als das Bild eines Kreises mit dem Radius a oder als das Bild eines Kreises mit dem Radius b aufgefasst werden. Dies liefert die folgende Ellipsenkonstruktion: Man zeichnet einen Strahl vom Mittelpunkt der beiden Kreise. Nun zeichnet man durch den Schnittpunkt dieses Strahls mit dem kleinen Kreis eine Horizontale und durch den mit dem großen Kreis eine Vertikale. Der Schnittpunkt dieser Horizontalen und Vertikalen ist dann ein Punkt der Ellipse. Hieraus entsteht die nächste Definition einer Ellipse. Definition 21: Eine Ellipse ist das Bild eines Kreises bei einer affinen Abbildung. 1 Vgl: SCHEID, Seite 134

More books from GRIN Verlag

Cover of the book Die Rolle des historischen Jesus in der Christologie des Karl Barth by Christian Scheuermann, Thomas Schrowe
Cover of the book The Construction and Contestation of Homosexual Identities in Contemporary Popular Culture by Christian Scheuermann, Thomas Schrowe
Cover of the book Erlebnispädagogik by Christian Scheuermann, Thomas Schrowe
Cover of the book Die Maiverfassung und die zweite Teilung Polens by Christian Scheuermann, Thomas Schrowe
Cover of the book Die Rolle der Frau in der römischen Antike by Christian Scheuermann, Thomas Schrowe
Cover of the book Förderung der sprachlich-kommunikativen Handlungsfähigkeit durch die Kenntnis von Kommunikationstheorien und -modellen by Christian Scheuermann, Thomas Schrowe
Cover of the book Hippias und die Anfänge der griechischen Philosophiegeschichte by Christian Scheuermann, Thomas Schrowe
Cover of the book Integrative Verfahren der Regulationsphysiologie und Regulationsmedizin: Homöopathie und Bach-Blütentherapie by Christian Scheuermann, Thomas Schrowe
Cover of the book Die Unterschiede in der Lebenserwartung bei Männern und Frauen by Christian Scheuermann, Thomas Schrowe
Cover of the book Untersuchung religionswissenschaftlicher Forschung im nachbardisziplinären Vergleich und Exkurs: Aleviten als Religionsgemeinschaft by Christian Scheuermann, Thomas Schrowe
Cover of the book Chancengleichheit im Bildungssystem by Christian Scheuermann, Thomas Schrowe
Cover of the book Orgasmus und Sexualität by Christian Scheuermann, Thomas Schrowe
Cover of the book Veränderung der Anforderungen an das Immobiliengeschäft vor dem Hintergrund der demographischen Entwicklung - Schwerpunkt Berliner Wohnungsbau by Christian Scheuermann, Thomas Schrowe
Cover of the book Zu: Emile Durkheim - Erziehung und Soziologie by Christian Scheuermann, Thomas Schrowe
Cover of the book Was wissen wir über die Steinzeit? by Christian Scheuermann, Thomas Schrowe
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy