The Developments and the Applications of the Numerical Algorithms in Simulating the Incompressible Magnetohydrodynamics with Complex Boundaries and Free Surfaces

Nonfiction, Science & Nature, Science, Physics, Mechanics, Technology, Engineering, Mechanical
Cover of the book The Developments and the Applications of the Numerical Algorithms in Simulating the Incompressible Magnetohydrodynamics with Complex Boundaries and Free Surfaces by Jie Zhang, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Jie Zhang ISBN: 9789811063404
Publisher: Springer Singapore Publication: May 25, 2018
Imprint: Springer Language: English
Author: Jie Zhang
ISBN: 9789811063404
Publisher: Springer Singapore
Publication: May 25, 2018
Imprint: Springer
Language: English

This thesis presents an accurate and advanced numerical methodology to remedy difficulties such as direct numerical simulation of magnetohydrodynamic (MHD) flow in computational fluid dynamics (CFD), grid generation processes in tokamak fusion facilities, and the coupling between the surface tension force and Lorentz force in the metallurgical industry. In addition, on the basis of the numerical platform it establishes, it also investigates selected interesting topics, e.g. single bubble motion under the influence of either vertical or horizontal magnetic fields. Furthermore, it confirms the relation between the bubble’s path instability and wake instability, and observes the anisotropic (isotropic) effect of the vertical (horizontal) magnetic field on the vortex structures, which determines the dynamic behavior of the rising bubble.

The direct numerical simulation of magnetohydrodynamic (MHD) flows has proven difficult in the field of computational fluid dynamic (CFD) research, because it not only concerns the coupling of the equations governing the electromagnetic field and the fluid motion, but also calls for suitable numerical methods for computing the electromagnetic field. In tokamak fusion facilities, where the MHD effect is significant and the flow domain is complex, the process of grid generation requires considerable time and effort. Moreover, in the metallurgical industry, where multiphase MHD flows are usually encountered, the coupling between the surface tension force and Lorentz force adds to the difficulty of deriving direct numerical simulations.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This thesis presents an accurate and advanced numerical methodology to remedy difficulties such as direct numerical simulation of magnetohydrodynamic (MHD) flow in computational fluid dynamics (CFD), grid generation processes in tokamak fusion facilities, and the coupling between the surface tension force and Lorentz force in the metallurgical industry. In addition, on the basis of the numerical platform it establishes, it also investigates selected interesting topics, e.g. single bubble motion under the influence of either vertical or horizontal magnetic fields. Furthermore, it confirms the relation between the bubble’s path instability and wake instability, and observes the anisotropic (isotropic) effect of the vertical (horizontal) magnetic field on the vortex structures, which determines the dynamic behavior of the rising bubble.

The direct numerical simulation of magnetohydrodynamic (MHD) flows has proven difficult in the field of computational fluid dynamic (CFD) research, because it not only concerns the coupling of the equations governing the electromagnetic field and the fluid motion, but also calls for suitable numerical methods for computing the electromagnetic field. In tokamak fusion facilities, where the MHD effect is significant and the flow domain is complex, the process of grid generation requires considerable time and effort. Moreover, in the metallurgical industry, where multiphase MHD flows are usually encountered, the coupling between the surface tension force and Lorentz force adds to the difficulty of deriving direct numerical simulations.

More books from Springer Singapore

Cover of the book Textbook of Membrane Biology by Jie Zhang
Cover of the book The Case for Repatriating China’s Cultural Objects by Jie Zhang
Cover of the book Social Life Cycle Assessment by Jie Zhang
Cover of the book Geological Disaster Monitoring Based on Sensor Networks by Jie Zhang
Cover of the book Knowledge Computing and its Applications by Jie Zhang
Cover of the book Plug In Electric Vehicles in Smart Grids by Jie Zhang
Cover of the book Task Scheduling for Multi-core and Parallel Architectures by Jie Zhang
Cover of the book Cross-Cultural Management and Quality Performance by Jie Zhang
Cover of the book Applications of Sliding Mode Control by Jie Zhang
Cover of the book Electric Distribution Network Management and Control by Jie Zhang
Cover of the book Liquid Metal Biomaterials by Jie Zhang
Cover of the book LED Lighting for Urban Agriculture by Jie Zhang
Cover of the book Proceedings of First International Conference on Smart System, Innovations and Computing by Jie Zhang
Cover of the book Sustainable Future for Human Security by Jie Zhang
Cover of the book Patient Involvement in Health Technology Assessment by Jie Zhang
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy