Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics

Nonfiction, Science & Nature, Science, Other Sciences, Weights & Measures, Physics, Astronomy
Cover of the book Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics by Masato Shirasaki, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Masato Shirasaki ISBN: 9789812877963
Publisher: Springer Singapore Publication: November 18, 2015
Imprint: Springer Language: English
Author: Masato Shirasaki
ISBN: 9789812877963
Publisher: Springer Singapore
Publication: November 18, 2015
Imprint: Springer
Language: English

In this book the applicability and the utility of two statistical approaches for understanding dark energy and dark matter with gravitational lensing measurement are introduced.
For cosmological constraints on the nature of dark energy, morphological statistics called Minkowski functionals (MFs) to extract the non-Gaussian information of gravitational lensing are studied. Measuring lensing MFs from the Canada–France–Hawaii Telescope Lensing survey (CFHTLenS), the author clearly shows that MFs can be powerful statistics beyond the conventional approach with the two-point correlation function. Combined with the two-point correlation function, MFs can constrain the equation of state of dark energy with a precision level of approximately 3–4 % in upcoming surveys with sky coverage of 20,000 square degrees.
On the topic of dark matter, the author studied the cross-correlation of gravitational lensing and the extragalactic gamma-ray background (EGB). Dark matter annihilation is among the potential contributors to the EGB. The cross-correlation is a powerful probe of signatures of dark matter annihilation, because both cosmic shear and gamma-ray emission originate directly from the same dark matter distribution in the universe. The first measurement of the cross-correlation using a real data set obtained from CFHTLenS and the Fermi Large Area Telescope was performed. Comparing the result with theoretical predictions, an independent constraint was placed on dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In this book the applicability and the utility of two statistical approaches for understanding dark energy and dark matter with gravitational lensing measurement are introduced.
For cosmological constraints on the nature of dark energy, morphological statistics called Minkowski functionals (MFs) to extract the non-Gaussian information of gravitational lensing are studied. Measuring lensing MFs from the Canada–France–Hawaii Telescope Lensing survey (CFHTLenS), the author clearly shows that MFs can be powerful statistics beyond the conventional approach with the two-point correlation function. Combined with the two-point correlation function, MFs can constrain the equation of state of dark energy with a precision level of approximately 3–4 % in upcoming surveys with sky coverage of 20,000 square degrees.
On the topic of dark matter, the author studied the cross-correlation of gravitational lensing and the extragalactic gamma-ray background (EGB). Dark matter annihilation is among the potential contributors to the EGB. The cross-correlation is a powerful probe of signatures of dark matter annihilation, because both cosmic shear and gamma-ray emission originate directly from the same dark matter distribution in the universe. The first measurement of the cross-correlation using a real data set obtained from CFHTLenS and the Fermi Large Area Telescope was performed. Comparing the result with theoretical predictions, an independent constraint was placed on dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter.

More books from Springer Singapore

Cover of the book The Sociotechnical Constitution of Resilience by Masato Shirasaki
Cover of the book Proceedings of the 4th Congrès International de Géotechnique - Ouvrages -Structures by Masato Shirasaki
Cover of the book The Finite Element Analysis Program MSC Marc/Mentat by Masato Shirasaki
Cover of the book Intelligent Computing, Networked Control, and Their Engineering Applications by Masato Shirasaki
Cover of the book Variational Methods in Molecular Modeling by Masato Shirasaki
Cover of the book Inner Experience of the Chinese People by Masato Shirasaki
Cover of the book Corporate Governance and Value Creation in Japan by Masato Shirasaki
Cover of the book Quality of Synthetic Speech by Masato Shirasaki
Cover of the book Development and Disaster Management by Masato Shirasaki
Cover of the book Aquatic Biodiversity Conservation and Ecosystem Services by Masato Shirasaki
Cover of the book China: Innovative Green Development by Masato Shirasaki
Cover of the book The Japanese Culture of Mourning Whales by Masato Shirasaki
Cover of the book Psychoactive Drug Abuse in Hong Kong by Masato Shirasaki
Cover of the book Abuse and Neglect of the Elderly in India by Masato Shirasaki
Cover of the book Alginates and Their Biomedical Applications by Masato Shirasaki
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy