Phase-stabilized Ultrashort Laser Systems for Spectroscopy

Nonfiction, Science & Nature, Science, Physics, General Physics
Cover of the book Phase-stabilized Ultrashort Laser Systems for Spectroscopy by Jens Rauschenberger, GRIN Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Jens Rauschenberger ISBN: 9783640096985
Publisher: GRIN Publishing Publication: July 7, 2008
Imprint: GRIN Publishing Language: English
Author: Jens Rauschenberger
ISBN: 9783640096985
Publisher: GRIN Publishing
Publication: July 7, 2008
Imprint: GRIN Publishing
Language: English

Doctoral Thesis / Dissertation from the year 2007 in the subject Physics - Theoretical Physics, grade: 1,0, LMU Munich (Max-Planck-Institut für Quantenoptik), 193 entries in the bibliography, language: English, abstract: The investigation of laser-matter interactions calls for ever shorter pulses as new effects can thus be explored. With laser pulses consisting of only a few cycles of the electric field, the phase of these electric field oscillations becomes important for many applications. In this thesis ultrafast laser sources are presented that provide few-cycle laser pulses with controlled evolution of the electric field waveform. Firstly, a technique for phasestabilizing ultra-broadband oscillators is discussed. With a simple setup it improves the reproducibility of the phase by an order of magnitude compared to previously existing methods. In a further step, such a phase-stabilized oscillator was integrated into a chirped-pulse amplifier. The preservation of phase-stability during amplification is ensured by secondary phase detection. The phase-stabilized intense laser pulses from this system were employed in a series of experiments that studied strong-field phenomena in a time-resolved manner. For instance, the laser-induced tunneling of electrons from atoms was studied on a sub-femtosecond timescale. Additional evidence for the reproducibility of the electric field waveform of the laser pulses is presented here: individual signatures of the electric field half-cycles were found in photoelectron spectra from above-threshold ionization. Frequency conversion of intense laser pulses by high-order harmonic generation is a common way of producing coherent light in the extreme ultraviolet (XUV) spectral region. Many attempts have been made to increase the low efficiency of this nonlinear process, e.g. by quasi phase-matching. Here, high-harmonic generation from solid surfaces under grazing incidence instead from a gas target is studied as higher efficiencies are expected in this configuration. Another approach to increasing the efficiency of high-harmonic generation is the placing of the gas target in an enhancement resonator. Additionally, the production of XUV photons happens at the full repetition rate of the seeding laser, i.e. in the region of several tens to hundreds of megahertz. This high repetition rate enables the use of the XUV light for high-precision optical frequency metrology with the frequency comb technique. With such an arrangement, harmonics up to 15th order were produced. A build-up cavity that stacks femtosecond laser pulses in a coherent manner to produce intra-cavity pulse energies of more than ten microjoules at a repetition rate of ten megahertz is presented here...

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Doctoral Thesis / Dissertation from the year 2007 in the subject Physics - Theoretical Physics, grade: 1,0, LMU Munich (Max-Planck-Institut für Quantenoptik), 193 entries in the bibliography, language: English, abstract: The investigation of laser-matter interactions calls for ever shorter pulses as new effects can thus be explored. With laser pulses consisting of only a few cycles of the electric field, the phase of these electric field oscillations becomes important for many applications. In this thesis ultrafast laser sources are presented that provide few-cycle laser pulses with controlled evolution of the electric field waveform. Firstly, a technique for phasestabilizing ultra-broadband oscillators is discussed. With a simple setup it improves the reproducibility of the phase by an order of magnitude compared to previously existing methods. In a further step, such a phase-stabilized oscillator was integrated into a chirped-pulse amplifier. The preservation of phase-stability during amplification is ensured by secondary phase detection. The phase-stabilized intense laser pulses from this system were employed in a series of experiments that studied strong-field phenomena in a time-resolved manner. For instance, the laser-induced tunneling of electrons from atoms was studied on a sub-femtosecond timescale. Additional evidence for the reproducibility of the electric field waveform of the laser pulses is presented here: individual signatures of the electric field half-cycles were found in photoelectron spectra from above-threshold ionization. Frequency conversion of intense laser pulses by high-order harmonic generation is a common way of producing coherent light in the extreme ultraviolet (XUV) spectral region. Many attempts have been made to increase the low efficiency of this nonlinear process, e.g. by quasi phase-matching. Here, high-harmonic generation from solid surfaces under grazing incidence instead from a gas target is studied as higher efficiencies are expected in this configuration. Another approach to increasing the efficiency of high-harmonic generation is the placing of the gas target in an enhancement resonator. Additionally, the production of XUV photons happens at the full repetition rate of the seeding laser, i.e. in the region of several tens to hundreds of megahertz. This high repetition rate enables the use of the XUV light for high-precision optical frequency metrology with the frequency comb technique. With such an arrangement, harmonics up to 15th order were produced. A build-up cavity that stacks femtosecond laser pulses in a coherent manner to produce intra-cavity pulse energies of more than ten microjoules at a repetition rate of ten megahertz is presented here...

More books from GRIN Publishing

Cover of the book Constructivism and Rationalism by Jens Rauschenberger
Cover of the book Death and the End of Time in Beckett's Endgame and Ionesco's Exit the King by Jens Rauschenberger
Cover of the book Demand for establishment of truth comission in Croatia for war-period 1991 - 1995 by Jens Rauschenberger
Cover of the book The Liberty of Religious Rights and Religious Education in the Frame of the State Legislation in Hungary by Jens Rauschenberger
Cover of the book Can Witchcraft be seen merely as a Manifestation of a Society that feared 'Marginal' Women? by Jens Rauschenberger
Cover of the book Changes In European Corporate Law - An Opportunity For Successful Post Merger Integration? by Jens Rauschenberger
Cover of the book A Business Model For The 21st Century by Jens Rauschenberger
Cover of the book Asset Management Strategies by Jens Rauschenberger
Cover of the book Expression of War in 'Strange Meeting', 'Anthem for a Doomed Youth', 'Futility' and 'Mental Cases' by Wilfred Owen by Jens Rauschenberger
Cover of the book Analysis of the Chilean tourism market - products and opportunities for the destination Pucón and the IXth region by Jens Rauschenberger
Cover of the book Metaphor and Culture by Jens Rauschenberger
Cover of the book How do Richard Burton and Anne Blunt address the issue of gender in their accounts of travel in Arabia? by Jens Rauschenberger
Cover of the book The ethical dilemma of non-forcible Humanitarian Interventions by Jens Rauschenberger
Cover of the book Critically analyse the decision of the European Court of First Instance in Airtours plc v EC Commission by Jens Rauschenberger
Cover of the book 'Will they pay for it?' A conceptual framework for analyzing consumer responses to pricing decisions regarding the online distribution of digital content by Jens Rauschenberger
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy