Lipid Hydroperoxide-Derived Modification of Biomolecules

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Health & Well Being, Medical, Specialties, Oncology
Cover of the book Lipid Hydroperoxide-Derived Modification of Biomolecules by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789400779204
Publisher: Springer Netherlands Publication: December 28, 2013
Imprint: Springer Language: English
Author:
ISBN: 9789400779204
Publisher: Springer Netherlands
Publication: December 28, 2013
Imprint: Springer
Language: English

Lipid peroxidation is an important cellular process which can lead to detrimental effects if it is not regulated efficiently. Lipid hydroperoxide is formed in an initial step of lipid peroxidation. Lipid hydroperoxide is also known as a potential source of singlet oxygen. Harmful aldehydes are formed when the lipid hydroperoxide is degraded. The formed aldehyde has high reactivity against thiol or amine moieties. Therefore, it could act as a signaling molecule, which might induce the changing of gears inside a cell. Recent studies have shown that lipid hydroperoxide or a slightly modified product of the lipid hydroperoxide reacts with biomolecules such as proteins and aminophospholipids, which leads to formation of amide-type adducts. Amide-type adducts could be one of markers for oxidative stress and could also be an important player in some diseases. In this book, the chemistry and biochemistry of lipid hydroperoxide along with their conjugates with biomolecules are described.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Lipid peroxidation is an important cellular process which can lead to detrimental effects if it is not regulated efficiently. Lipid hydroperoxide is formed in an initial step of lipid peroxidation. Lipid hydroperoxide is also known as a potential source of singlet oxygen. Harmful aldehydes are formed when the lipid hydroperoxide is degraded. The formed aldehyde has high reactivity against thiol or amine moieties. Therefore, it could act as a signaling molecule, which might induce the changing of gears inside a cell. Recent studies have shown that lipid hydroperoxide or a slightly modified product of the lipid hydroperoxide reacts with biomolecules such as proteins and aminophospholipids, which leads to formation of amide-type adducts. Amide-type adducts could be one of markers for oxidative stress and could also be an important player in some diseases. In this book, the chemistry and biochemistry of lipid hydroperoxide along with their conjugates with biomolecules are described.

More books from Springer Netherlands

Cover of the book Surgery and Pathology of the Middle Ear by
Cover of the book Cladocera as Model Organisms in Biology by
Cover of the book Stem Cells and Cancer Stem Cells, Volume 8 by
Cover of the book Proximity Levinas, Blanchot, Bataille and Communication by
Cover of the book Precision Crop Protection - the Challenge and Use of Heterogeneity by
Cover of the book Enzymes and Food Processing by
Cover of the book Mites: Ecology, Evolution & Behaviour by
Cover of the book Atlas of Experimental Toxicological Pathology by
Cover of the book The Soils of Chile by
Cover of the book Handbook of Quantitative Forest Genetics by
Cover of the book Introduction to Aristotle’s Theory of Being as Being by
Cover of the book A Positive Psychology Perspective on Quality of Life by
Cover of the book New Advances in Gastrointestinal Motility Research by
Cover of the book The Islets of Langerhans by
Cover of the book Diagnosis of human peroxisomal disorders by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy