Bewertung neuartiger metallorganischer Precursoren für die chemische Gasphasenabscheidung von Kupfer für Metallisierungssysteme der Mikroelektronik

Nonfiction, Science & Nature, Technology, Electricity
Cover of the book Bewertung neuartiger metallorganischer Precursoren für die chemische Gasphasenabscheidung von Kupfer für Metallisierungssysteme der Mikroelektronik by Thomas Wächtler, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Thomas Wächtler ISBN: 9783638052771
Publisher: GRIN Verlag Publication: May 26, 2008
Imprint: GRIN Verlag Language: German
Author: Thomas Wächtler
ISBN: 9783638052771
Publisher: GRIN Verlag
Publication: May 26, 2008
Imprint: GRIN Verlag
Language: German

Diplomarbeit aus dem Jahr 2004 im Fachbereich Elektrotechnik, Note: 1,3, Technische Universität Chemnitz (Fakultät für Elektrotechnik und Informationstechnik, Zentrum für Mikrotechnologien), 87 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Vor dem Hintergrund der in der Mikroelektronik-Fertigung heute verbreiteten Kupfertechnologie werden in der vorliegenden Arbeit drei neuartige metallorganische Verbindungen, nämlich phosphitstabilisierte Kupfer(I)-Trifluoracetat-Komplexe vorgestellt und hinsichtlich ihrer Anwendbarkeit für die chemische Gasphasenabscheidung (CVD) von Kupfer untersucht. Im einzelnen handelt es ich um die Substanzen Tris(trimethylphosphit)kupfer(I)trifluoracetat (METFA), Tris(triethylphosphit)kupfer(I)trifluoracetat (ETTFA) und Tri(tris(trifluorethyl)phosphit)kupfer(I)trifluoracetat (CFTFA). Mit den Substanzen erfolgen CVD-Experimente auf TiN und Cu bei Temperaturen <400°C. Die Precursoren werden dabei mittels eines Flüssigdosiersystems mit Verdampfereinheit der Reaktionskammer zugeführt. Während METFA wegen seiner ausreichend geringen Viskosität unverdünnt verwendet werden kann, kommen für ETTFA und CFTFA jeweils Precursor-Acetonitril-Gemische zum Einsatz. Mit keinem der Neustoffe können auf TiN geschlossene Kupferschichten erzeugt werden, während dies auf Kupferunterlagen in Verbindung mit Wasserstoff als Reduktionsmittel gelingt. Die Abscheiderate beträgt hierbei 2-3nm/min; der spezifische Widerstand der Schichten bewegt sich zwischen 4??cm und 5??cm. Mit allen Substanzen werden besonders an dünnen, gesputterten Kupferschichten Agglomerationserscheinungen und Lochbildung beobachtet. Im Fall von CFTFA treten zusätzlich Schäden am darunterliegenden TiN/SiO2-Schichtstapel auf. Vergleichende Untersuchungen mit der für die Cu-CVD etablierten Substanz (TMVS)Cu(hfac) ergeben sowohl auf Cu als auch auf TiN geschlossene Kupferschichten. Dabei liegen die Abscheideraten bei Temperaturen zwischen 180°C und 200°C im allgemeinen deutlich über 100nm/min. Ein Vergleich dieser Resultate mit den Ergebnissen für die Neustoffe legt nahe, dass den untersuchten Kupfer(I)-Trifluoracetaten keine ausreichende Tauglichkeit für Cu-CVD-Prozesse in der Mikroelektronik-Technologie bescheinigt werden kann. Die im Vergleich zu (TMVS)Cu(hfac) höhere thermische Stabilität der Precursoren und ihre Fähigkeit, mit Wasserstoff als Reaktionspartner auf Cu geschlossene Kupferschichten erzeugen zu können, deutet jedoch auf ihre eventuelle Eignung für ALD-Prozesse hin. Daher widmet sich die Arbeit in einem abschließenden Kapitel dem Thema der Atomic Layer Deposition (ALD), wobei nach einem allgemeinen Überblick besonders auf für die Mikroelektronik relevante ALD-Prozesse eingegangen wird.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Diplomarbeit aus dem Jahr 2004 im Fachbereich Elektrotechnik, Note: 1,3, Technische Universität Chemnitz (Fakultät für Elektrotechnik und Informationstechnik, Zentrum für Mikrotechnologien), 87 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Vor dem Hintergrund der in der Mikroelektronik-Fertigung heute verbreiteten Kupfertechnologie werden in der vorliegenden Arbeit drei neuartige metallorganische Verbindungen, nämlich phosphitstabilisierte Kupfer(I)-Trifluoracetat-Komplexe vorgestellt und hinsichtlich ihrer Anwendbarkeit für die chemische Gasphasenabscheidung (CVD) von Kupfer untersucht. Im einzelnen handelt es ich um die Substanzen Tris(trimethylphosphit)kupfer(I)trifluoracetat (METFA), Tris(triethylphosphit)kupfer(I)trifluoracetat (ETTFA) und Tri(tris(trifluorethyl)phosphit)kupfer(I)trifluoracetat (CFTFA). Mit den Substanzen erfolgen CVD-Experimente auf TiN und Cu bei Temperaturen <400°C. Die Precursoren werden dabei mittels eines Flüssigdosiersystems mit Verdampfereinheit der Reaktionskammer zugeführt. Während METFA wegen seiner ausreichend geringen Viskosität unverdünnt verwendet werden kann, kommen für ETTFA und CFTFA jeweils Precursor-Acetonitril-Gemische zum Einsatz. Mit keinem der Neustoffe können auf TiN geschlossene Kupferschichten erzeugt werden, während dies auf Kupferunterlagen in Verbindung mit Wasserstoff als Reduktionsmittel gelingt. Die Abscheiderate beträgt hierbei 2-3nm/min; der spezifische Widerstand der Schichten bewegt sich zwischen 4??cm und 5??cm. Mit allen Substanzen werden besonders an dünnen, gesputterten Kupferschichten Agglomerationserscheinungen und Lochbildung beobachtet. Im Fall von CFTFA treten zusätzlich Schäden am darunterliegenden TiN/SiO2-Schichtstapel auf. Vergleichende Untersuchungen mit der für die Cu-CVD etablierten Substanz (TMVS)Cu(hfac) ergeben sowohl auf Cu als auch auf TiN geschlossene Kupferschichten. Dabei liegen die Abscheideraten bei Temperaturen zwischen 180°C und 200°C im allgemeinen deutlich über 100nm/min. Ein Vergleich dieser Resultate mit den Ergebnissen für die Neustoffe legt nahe, dass den untersuchten Kupfer(I)-Trifluoracetaten keine ausreichende Tauglichkeit für Cu-CVD-Prozesse in der Mikroelektronik-Technologie bescheinigt werden kann. Die im Vergleich zu (TMVS)Cu(hfac) höhere thermische Stabilität der Precursoren und ihre Fähigkeit, mit Wasserstoff als Reaktionspartner auf Cu geschlossene Kupferschichten erzeugen zu können, deutet jedoch auf ihre eventuelle Eignung für ALD-Prozesse hin. Daher widmet sich die Arbeit in einem abschließenden Kapitel dem Thema der Atomic Layer Deposition (ALD), wobei nach einem allgemeinen Überblick besonders auf für die Mikroelektronik relevante ALD-Prozesse eingegangen wird.

More books from GRIN Verlag

Cover of the book Albrecht Altdorfer - Donaulandschaft bei Regensburg by Thomas Wächtler
Cover of the book Echtzeiterweiterungen in UML 2.0 und UML-RT by Thomas Wächtler
Cover of the book Midlife-Krise im Verein?! - Eine Untersuchung des Angebots im Paderborner Vereinssport by Thomas Wächtler
Cover of the book Einsatz von XML Topic Maps im Wissensmanagement. Definition und Visualisierung von Wissensthemen by Thomas Wächtler
Cover of the book Welche Kriterien müssen wir beim Schluss einer Erörterung beachten? by Thomas Wächtler
Cover of the book Romy Schneider. Sie wollte nicht ewig 'Sissi' sein by Thomas Wächtler
Cover of the book Elementare Methoden des Ziel- und Zeitmanagements und die besonders wichtigen Erfolgsfaktoren im Zeitmanagement by Thomas Wächtler
Cover of the book Die Anfänge der Kirche und die Ausbreitung des Christentums by Thomas Wächtler
Cover of the book Unterrichtsstunde: Erkunden der Wirksamkeit der Vorbeschleunigungserweiterung auf die Wurfweite - Eine Hinführung zur Zieltechnik im Diskuswurf by Thomas Wächtler
Cover of the book Zu: Maud Mannoni - Das zurückgebliebene Kind und seine Mutter by Thomas Wächtler
Cover of the book Geheimnis und Geheimhaltungspraxis im Kontext des strukturellen Aufbaus des Ordens der Rosenkreuzer by Thomas Wächtler
Cover of the book Anwendung der Prozesskostenrechnung in einer Einzelhandesfiliale am Beispiel eines Hauptprozesses by Thomas Wächtler
Cover of the book Die Gefahr von 'Basel 2' für kleine und mittelständischen Unternehmen by Thomas Wächtler
Cover of the book Vergleich der Sportstrukturen zwischen BRD und DDR by Thomas Wächtler
Cover of the book Aktuelle Entwicklung der Abschlussprüfung in der Europäischen Union by Thomas Wächtler
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy