Whole-Body Impedance Control of Wheeled Humanoid Robots

Nonfiction, Science & Nature, Technology, Robotics, Computers, Advanced Computing, Artificial Intelligence
Cover of the book Whole-Body Impedance Control of Wheeled Humanoid Robots by Alexander Dietrich, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Alexander Dietrich ISBN: 9783319405575
Publisher: Springer International Publishing Publication: July 2, 2016
Imprint: Springer Language: English
Author: Alexander Dietrich
ISBN: 9783319405575
Publisher: Springer International Publishing
Publication: July 2, 2016
Imprint: Springer
Language: English

Introducing mobile humanoid robots into human environments requires the systems to physically interact and execute multiple concurrent tasks. The monograph at hand presents a whole-body torque controller for dexterous and safe robotic manipulation. This control approach enables a mobile humanoid robot to simultaneously meet several control objectives with different pre-defined levels of priority, while providing the skills for compliant physical contacts with humans and the environment.

After a general introduction into the topic of whole-body control, several essential reactive tasks are developed to extend the repertoire of robotic control objectives. Additionally, the classical Cartesian impedance is extended to the case of mobile robots. All of these tasks are then combined and integrated into an overall, priority-based control law. Besides the experimental validation of the approach, the formal proof of asymptotic stability for this hierarchical controller is presented. By interconnecting the whole-body controller with an artificial intelligence, the immense potential of the integrated approach for complex real-world applications is shown. Several typical household chores, such as autonomously wiping a window or sweeping the floor with a broom, are successfully performed on the mobile humanoid robot Rollin’ Justin of the German Aerospace Center (DLR).

The results suggest the presented controller for a large variety of fields of application such as service robotics, human-robot cooperation in industry, telepresence in medical applications, space robotics scenarios, and the operation of mobile robots in dangerous and hazardous environments.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Introducing mobile humanoid robots into human environments requires the systems to physically interact and execute multiple concurrent tasks. The monograph at hand presents a whole-body torque controller for dexterous and safe robotic manipulation. This control approach enables a mobile humanoid robot to simultaneously meet several control objectives with different pre-defined levels of priority, while providing the skills for compliant physical contacts with humans and the environment.

After a general introduction into the topic of whole-body control, several essential reactive tasks are developed to extend the repertoire of robotic control objectives. Additionally, the classical Cartesian impedance is extended to the case of mobile robots. All of these tasks are then combined and integrated into an overall, priority-based control law. Besides the experimental validation of the approach, the formal proof of asymptotic stability for this hierarchical controller is presented. By interconnecting the whole-body controller with an artificial intelligence, the immense potential of the integrated approach for complex real-world applications is shown. Several typical household chores, such as autonomously wiping a window or sweeping the floor with a broom, are successfully performed on the mobile humanoid robot Rollin’ Justin of the German Aerospace Center (DLR).

The results suggest the presented controller for a large variety of fields of application such as service robotics, human-robot cooperation in industry, telepresence in medical applications, space robotics scenarios, and the operation of mobile robots in dangerous and hazardous environments.

More books from Springer International Publishing

Cover of the book Modelling the Fate of Chemicals in the Environment and the Human Body by Alexander Dietrich
Cover of the book Dynamic Games for Network Security by Alexander Dietrich
Cover of the book The Plural Practice of Adoption in Pacific Island States by Alexander Dietrich
Cover of the book Abstract Algebra by Alexander Dietrich
Cover of the book Sustainability of Agricultural Environment in Egypt: Part II by Alexander Dietrich
Cover of the book Building Integrated Photovoltaic (BIPV) in Trentino Alto Adige by Alexander Dietrich
Cover of the book Nourishing Communities by Alexander Dietrich
Cover of the book Nanoscale Insights into Ion-Beam Cancer Therapy by Alexander Dietrich
Cover of the book Research in Attacks, Intrusions, and Defenses by Alexander Dietrich
Cover of the book Engineering Challenges for Sustainable Underground Use by Alexander Dietrich
Cover of the book Software Engineering for Resilient Systems by Alexander Dietrich
Cover of the book Urban Air Pollution Monitoring by Ground-Based Stations and Satellite Data by Alexander Dietrich
Cover of the book Technology for Smart Futures by Alexander Dietrich
Cover of the book Dependent Data in Social Sciences Research by Alexander Dietrich
Cover of the book Digital Storage in Consumer Electronics by Alexander Dietrich
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy