Vortices and Nanostructured Superconductors

Nonfiction, Science & Nature, Technology, Superconductors & Superconductivity, Material Science
Cover of the book Vortices and Nanostructured Superconductors by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319593555
Publisher: Springer International Publishing Publication: July 19, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319593555
Publisher: Springer International Publishing
Publication: July 19, 2017
Imprint: Springer
Language: English

This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication.

In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researchers survey the most exciting and important recent developments in the field.  Topics covered include: the use of scanning Hall probe microscopy to visualize interactions of a single vortex with pinning centers; Magneto-Optical Imaging for investigating what vortex avalanches are, why they appear, and how they can be controlled; and the vortex interactions responsible for the second magnetization peak. Other chapters discuss nanoengineered pinning centers of vortices for improved current-carrying capabilities, current anisotropy in cryomagnetic devices in relation to the pinning landscape, and the new physics associated with the discovery of new superconducting materials with multi-component superconductivity. The book offers something for almost everybody interested in the field: from experimental techniques to visualize vortices and study their dynamics, to a state-of-the-art theoretical microscopic approach to multicomponent superconductivity.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication.

In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researchers survey the most exciting and important recent developments in the field.  Topics covered include: the use of scanning Hall probe microscopy to visualize interactions of a single vortex with pinning centers; Magneto-Optical Imaging for investigating what vortex avalanches are, why they appear, and how they can be controlled; and the vortex interactions responsible for the second magnetization peak. Other chapters discuss nanoengineered pinning centers of vortices for improved current-carrying capabilities, current anisotropy in cryomagnetic devices in relation to the pinning landscape, and the new physics associated with the discovery of new superconducting materials with multi-component superconductivity. The book offers something for almost everybody interested in the field: from experimental techniques to visualize vortices and study their dynamics, to a state-of-the-art theoretical microscopic approach to multicomponent superconductivity.

More books from Springer International Publishing

Cover of the book Foundational Aspects of Family-School Partnership Research by
Cover of the book Strategic Design and Innovative Thinking in Business Operations by
Cover of the book Aligning Organizations Through Measurement by
Cover of the book Special Metrics and Group Actions in Geometry by
Cover of the book Reviews of Environmental Contamination and Toxicology by
Cover of the book Transport Processes in Space Physics and Astrophysics by
Cover of the book Distributed Consensus with Visual Perception in Multi-Robot Systems by
Cover of the book The Practice of Research on Migration and Mobilities by
Cover of the book Sleep Issues in Neuromuscular Disorders by
Cover of the book Collaborative Computing: Networking, Applications and Worksharing by
Cover of the book A Survey on Coordinated Power Management in Multi-Tenant Data Centers by
Cover of the book Advances in Nature-Inspired Computing and Applications by
Cover of the book Imperial Women Writers in Victorian India by
Cover of the book Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools by
Cover of the book Impacts of Cyberbullying, Building Social and Emotional Resilience in Schools by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy