Un approccio computazionale al problema della convergenza della serie di Fourier

Nonfiction, Science & Nature, Mathematics
Cover of the book Un approccio computazionale al problema della convergenza della serie di Fourier by Marcello Colozzo, Passerino
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Marcello Colozzo ISBN: 9788893455039
Publisher: Passerino Publication: July 13, 2018
Imprint: Language: Italian
Author: Marcello Colozzo
ISBN: 9788893455039
Publisher: Passerino
Publication: July 13, 2018
Imprint:
Language: Italian

Nei primi anni del diciannovesimo secolo il matematico francese J.B.J. Fourier fu condotto dalle sue ricerche sulla conduzione del calore alla notevole scoperta di certe serie trigonometriche che oggi portano il suo nome. Da allora l'Analisi di Fourier è parte integrante della formazione di fisici, matematici ed ingegneri.
Peraltro, la ricerca di condizioni necessarie e sufficienti per la convergenza della serie di Fourier di una funzione periodica
f:R->R è un problema aperto dell'Analisi matematica. Infatti, sono note solo alcune condizioni sufficienti - denominate "condizioni di Dirichlet" - che compongono un criterio di convergenza puntuale della serie, noto in letteratura come Teorema di Dirichlet.

Le condizioni di Dirichlet richiedono la continuità a tratti della funzione f(x). Tuttavia nei punti in cui la funzione ha una discontinuità di prima specie, la serie di Fourier converge verso la media aritmetica dei limiti sinistro e destro, rispettivamente. Inoltre, tali punti di discontinuità danno luogo al cosiddetto "fenomeno di Gibbs", che consiste in oscillazioni dello sviluppo in serie con conseguente non convergenza (fenomeno che si presenta anche con altre approssimazioni polinomiali e non solo con i polinomi trigonometrici come ad esempio, i polinomi di Legendre e i polinomi di Tchebichef).

Questo ebook è costituito da esperimenti computazionali eseguiti nell'ambiente di calcolo Mathematica, il cui scopo è quello di analizzare le cause della non convergenza della serie. Fondamentalmente, l'approccio si articola in due parti: 1) Il ruolo svolto dalla derivata di f(x). 2) Il ruolo svolto dalla monotonia di f(x).
Prima di passare in rassegna l'aspetto analitico-teorico per ciò che riguarda proprietà e convergenza della serie di Fourier, si prende in considerazione un'applicazione della predetta serie ai circuiti elettrici, analizzando la forma d'onda in uscita da un raddrizzatore ad onda completa.

Marcello Colozzo, laureato in Fisica si occupa sin dal 2008 di didattica online di Matematica e Fisica attraverso il sito web Extra Byte dove vengono eseguite "simulazioni" nell'ambiente di calcolo Mathematica.
Negli ultimi anni ha pubblicato vari articoli di fisica matematica e collabora con la rivista Elettronica Open Source. 
Appassionato lettore di narrativa cyberpunk, ha provato ad eseguire una transizione verso lo stato di "scrittore cyber", pubblicando varie antologie di racconti.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Nei primi anni del diciannovesimo secolo il matematico francese J.B.J. Fourier fu condotto dalle sue ricerche sulla conduzione del calore alla notevole scoperta di certe serie trigonometriche che oggi portano il suo nome. Da allora l'Analisi di Fourier è parte integrante della formazione di fisici, matematici ed ingegneri.
Peraltro, la ricerca di condizioni necessarie e sufficienti per la convergenza della serie di Fourier di una funzione periodica
f:R->R è un problema aperto dell'Analisi matematica. Infatti, sono note solo alcune condizioni sufficienti - denominate "condizioni di Dirichlet" - che compongono un criterio di convergenza puntuale della serie, noto in letteratura come Teorema di Dirichlet.

Le condizioni di Dirichlet richiedono la continuità a tratti della funzione f(x). Tuttavia nei punti in cui la funzione ha una discontinuità di prima specie, la serie di Fourier converge verso la media aritmetica dei limiti sinistro e destro, rispettivamente. Inoltre, tali punti di discontinuità danno luogo al cosiddetto "fenomeno di Gibbs", che consiste in oscillazioni dello sviluppo in serie con conseguente non convergenza (fenomeno che si presenta anche con altre approssimazioni polinomiali e non solo con i polinomi trigonometrici come ad esempio, i polinomi di Legendre e i polinomi di Tchebichef).

Questo ebook è costituito da esperimenti computazionali eseguiti nell'ambiente di calcolo Mathematica, il cui scopo è quello di analizzare le cause della non convergenza della serie. Fondamentalmente, l'approccio si articola in due parti: 1) Il ruolo svolto dalla derivata di f(x). 2) Il ruolo svolto dalla monotonia di f(x).
Prima di passare in rassegna l'aspetto analitico-teorico per ciò che riguarda proprietà e convergenza della serie di Fourier, si prende in considerazione un'applicazione della predetta serie ai circuiti elettrici, analizzando la forma d'onda in uscita da un raddrizzatore ad onda completa.

Marcello Colozzo, laureato in Fisica si occupa sin dal 2008 di didattica online di Matematica e Fisica attraverso il sito web Extra Byte dove vengono eseguite "simulazioni" nell'ambiente di calcolo Mathematica.
Negli ultimi anni ha pubblicato vari articoli di fisica matematica e collabora con la rivista Elettronica Open Source. 
Appassionato lettore di narrativa cyberpunk, ha provato ad eseguire una transizione verso lo stato di "scrittore cyber", pubblicando varie antologie di racconti.

More books from Passerino

Cover of the book Il romanzo della guerra nell'anno 1914 by Marcello Colozzo
Cover of the book Esperimenti computazionali con Mathematica: il Teorema dei Carabinieri by Marcello Colozzo
Cover of the book Enchiridion by Marcello Colozzo
Cover of the book Miscellaneous aphorisms by Marcello Colozzo
Cover of the book Giordano Bruno by Marcello Colozzo
Cover of the book 59 curiosità sui Templari by Marcello Colozzo
Cover of the book Anselmo D'Aosta by Marcello Colozzo
Cover of the book Orazio by Marcello Colozzo
Cover of the book Charles De Gaulle by Marcello Colozzo
Cover of the book Un approccio computazionale alla Congettura di Riemann by Marcello Colozzo
Cover of the book 45 curiosità sul Ku Klux Klan by Marcello Colozzo
Cover of the book Un Fiume di ricordi by Marcello Colozzo
Cover of the book L'Inquisizione by Marcello Colozzo
Cover of the book Dialogue entre un prêtre et un moribond by Marcello Colozzo
Cover of the book 39 curiosità sui Raimondo di Tolosa by Marcello Colozzo
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy