Author: | Mubashir Gulzar | ISBN: | 9789811082948 |
Publisher: | Springer Singapore | Publication: | March 30, 2018 |
Imprint: | Springer | Language: | English |
Author: | Mubashir Gulzar |
ISBN: | 9789811082948 |
Publisher: | Springer Singapore |
Publication: | March 30, 2018 |
Imprint: | Springer |
Language: | English |
This thesis investigates the tribological viability of bio-based base stock to which different nanoparticles were incorporated for engine piston-ring–cylinder-liner interaction. It determines experimentally the effects of lubricating oil conditions (new and engine-aged) on the friction and wear of the materials used for piston rings and cylinder liners. The specific base stock examined was a trimethylolpropane (TMP) ester derived from palm oil, and the nanoparticles were used as additives to obtain tribologically enhanced bio-based lubricants. The overall analysis of the results demonstrated the potential of nanoparticles to improve the tribological behavior of bio-based base stock for piston-ring–cylinder-liner interaction.
This thesis investigates the tribological viability of bio-based base stock to which different nanoparticles were incorporated for engine piston-ring–cylinder-liner interaction. It determines experimentally the effects of lubricating oil conditions (new and engine-aged) on the friction and wear of the materials used for piston rings and cylinder liners. The specific base stock examined was a trimethylolpropane (TMP) ester derived from palm oil, and the nanoparticles were used as additives to obtain tribologically enhanced bio-based lubricants. The overall analysis of the results demonstrated the potential of nanoparticles to improve the tribological behavior of bio-based base stock for piston-ring–cylinder-liner interaction.