Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development

Nonfiction, Health & Well Being, Medical, Medical Science, Genetics, Specialties, Oncology
Cover of the book Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642451980
Publisher: Springer Berlin Heidelberg Publication: March 12, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783642451980
Publisher: Springer Berlin Heidelberg
Publication: March 12, 2014
Imprint: Springer
Language: English

During vertebrate hematopoiesis many specialized cell types are formed with vastly different functions such as B cells, T cells, granulocytes, macrophages, erythrocytes and megakaryocytes. To tightly control the enormous proliferative potential of developing blood cells, an intricately balanced signaling and transcription network has evolved that ensures that the different cell types are formed at the right time and in the right numbers. Intricate regulatory mechanisms ensure that blood cells function properly and have a determined life span. Moreover, in the adaptive immune system, long-lived memory cells have evolved that ensure that when pathogens have been seen once they will never cause a problem again. In this book we will therefore make a journey from asking how more primitive organisms use the epigenetic regulatory machinery to balance growth with differentiation control towards digging deep into what controls the function of specialized cells of the human immune system. We will first discover that flies make blood but exist without blood vessels, why fish make blood cells in the kidney and which precise genetic circuitries are required for these developmental pathways. We will then learn the regulatory principles that drive the differentiation of mature blood cells from stem cells and what controls their function in mammals. In the process, we will find out what unites hematopoietic stem cells and endothelial cells. Finally, we will shed light on the molecular mechanisms that either alter hematopoietic cell differentiation or lead to the development of cells with impaired function.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

During vertebrate hematopoiesis many specialized cell types are formed with vastly different functions such as B cells, T cells, granulocytes, macrophages, erythrocytes and megakaryocytes. To tightly control the enormous proliferative potential of developing blood cells, an intricately balanced signaling and transcription network has evolved that ensures that the different cell types are formed at the right time and in the right numbers. Intricate regulatory mechanisms ensure that blood cells function properly and have a determined life span. Moreover, in the adaptive immune system, long-lived memory cells have evolved that ensure that when pathogens have been seen once they will never cause a problem again. In this book we will therefore make a journey from asking how more primitive organisms use the epigenetic regulatory machinery to balance growth with differentiation control towards digging deep into what controls the function of specialized cells of the human immune system. We will first discover that flies make blood but exist without blood vessels, why fish make blood cells in the kidney and which precise genetic circuitries are required for these developmental pathways. We will then learn the regulatory principles that drive the differentiation of mature blood cells from stem cells and what controls their function in mammals. In the process, we will find out what unites hematopoietic stem cells and endothelial cells. Finally, we will shed light on the molecular mechanisms that either alter hematopoietic cell differentiation or lead to the development of cells with impaired function.

More books from Springer Berlin Heidelberg

Cover of the book Small Molecules in Oncology by
Cover of the book Asset Management für Infrastrukturanlagen - Energie und Wasser by
Cover of the book Bedürfnis- und lösungsorientierte Gespräche führen - privat und beruflich by
Cover of the book Angewandte Virtuelle Techniken im Produktentstehungsprozess by
Cover of the book Rehabilitation in Orthopädie und Unfallchirurgie by
Cover of the book In-situ Materials Characterization by
Cover of the book Neurosecretion - The Final Neuroendocrine Pathway by
Cover of the book Balances by
Cover of the book Schmerzpsychotherapie by
Cover of the book Atmospheric Methane by
Cover of the book Intelligent Information and Database Systems by
Cover of the book Stochastic Biomathematical Models by
Cover of the book Dienstleistungsengineering und -management by
Cover of the book Wilms Tumor: Clinical and Molecular Characterization by
Cover of the book Integrated Resource Strategic Planning and Power Demand-Side Management by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy