Theory and Principled Methods for the Design of Metaheuristics

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, Computer Science, General Computing
Cover of the book Theory and Principled Methods for the Design of Metaheuristics by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642332067
Publisher: Springer Berlin Heidelberg Publication: December 19, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783642332067
Publisher: Springer Berlin Heidelberg
Publication: December 19, 2013
Imprint: Springer
Language: English

Metaheuristics, and evolutionary algorithms in particular, are known to provide efficient, adaptable solutions for many real-world problems, but the often informal way in which they are defined and applied has led to misconceptions, and even successful applications are sometimes the outcome of trial and error. Ideally, theoretical studies should explain when and why metaheuristics work, but the challenge is huge: mathematical analysis requires significant effort even for simple scenarios and real-life problems are usually quite complex.

 

In this book the editors establish a bridge between theory and practice, presenting principled methods that incorporate problem knowledge in evolutionary algorithms and other metaheuristics. The book consists of 11 chapters dealing with the following topics: theoretical results that show what is not possible, an assessment of unsuccessful lines of empirical research; methods for rigorously defining the appropriate scope of problems while acknowledging the compromise between the class of problems to which a search algorithm is applied and its overall expected performance; the top-down principled design of search algorithms, in particular showing that it is possible to design algorithms that are provably good for some rigorously defined classes; and, finally, principled practice, that is reasoned and systematic approaches to setting up experiments, metaheuristic adaptation to specific problems, and setting parameters.

 

With contributions by some of the leading researchers in this domain, this book will be of significant value to scientists, practitioners, and graduate students in the areas of evolutionary computing, metaheuristics, and computational intelligence.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Metaheuristics, and evolutionary algorithms in particular, are known to provide efficient, adaptable solutions for many real-world problems, but the often informal way in which they are defined and applied has led to misconceptions, and even successful applications are sometimes the outcome of trial and error. Ideally, theoretical studies should explain when and why metaheuristics work, but the challenge is huge: mathematical analysis requires significant effort even for simple scenarios and real-life problems are usually quite complex.

 

In this book the editors establish a bridge between theory and practice, presenting principled methods that incorporate problem knowledge in evolutionary algorithms and other metaheuristics. The book consists of 11 chapters dealing with the following topics: theoretical results that show what is not possible, an assessment of unsuccessful lines of empirical research; methods for rigorously defining the appropriate scope of problems while acknowledging the compromise between the class of problems to which a search algorithm is applied and its overall expected performance; the top-down principled design of search algorithms, in particular showing that it is possible to design algorithms that are provably good for some rigorously defined classes; and, finally, principled practice, that is reasoned and systematic approaches to setting up experiments, metaheuristic adaptation to specific problems, and setting parameters.

 

With contributions by some of the leading researchers in this domain, this book will be of significant value to scientists, practitioners, and graduate students in the areas of evolutionary computing, metaheuristics, and computational intelligence.

More books from Springer Berlin Heidelberg

Cover of the book Patellofemoral Pain, Instability, and Arthritis by
Cover of the book Closed Functional Treatment of Fractures by
Cover of the book The Development of the Visual System of the Albino Rat by
Cover of the book Notfallkommando - Kommunikation in Notfallsituationen für Gesundheitsberufe by
Cover of the book First International Moxifloxacin Symposium by
Cover of the book Neuropsychological Rehabilitation by
Cover of the book The Baltic Sea Basin by
Cover of the book Perspectives of System Informatics by
Cover of the book Formulas Useful for Linear Regression Analysis and Related Matrix Theory by
Cover of the book Satellite Hydrocarbon Exploration by
Cover of the book Collisions Engineering: Theory and Applications by
Cover of the book CSR und Wirtschaftspsychologie by
Cover of the book Organic Metal and Metalloid Species in the Environment by
Cover of the book Complications of Cancer Chemotherapy by
Cover of the book Public Health Challenges in Contemporary China by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy