The X-43A Flight Research Program: Lessons Learned on the Road to Mach 10 - Hyper-X (HXRV), Hypersonic Scramjet, National Aero-Space Plane (NASP), HySTP, Dan Goldin, Fullerton

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book The X-43A Flight Research Program: Lessons Learned on the Road to Mach 10 - Hyper-X (HXRV), Hypersonic Scramjet, National Aero-Space Plane (NASP), HySTP, Dan Goldin, Fullerton by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781310861543
Publisher: Progressive Management Publication: April 29, 2015
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781310861543
Publisher: Progressive Management
Publication: April 29, 2015
Imprint: Smashwords Edition
Language: English

Professionally converted for accurate flowing-text e-book format reproduction, this NASA report provides a comprehensive history of the X-43A Hyper-X (Hypersonic Experiment) program. In this NASA project, a supersonic combustion ramjet (scramjet) engine was flight tested on a subscale vehicle. The X-43A Hyper-X Research Vehicle (HXRV) was launched from a B-52B mothership, then boosted to the test speed by a modified Pegasus rocket first stage, called the Hyper-X Launch Vehicle (HXLV). Once at the proper speed and altitude, the X-43A separated from the booster, stabilized itself, and then the engine test began. Although wind-tunnel scramjet engine tests had begun in the late 1950s, before the Hyper-X program there had never been an actual in-flight test of such an engine integrated with an appropriate airframe. Thus, while the scramjet had successfully operated in the artificial airflow of wind tunnels, the concept had yet to be proven in "real air." These conditions meant changes in density and temperature, as well as changes in angle of attack and sideslip of a free-flying vehicle. A wind tunnel is limited in its ability to simulate these subtle factures, which have a major impact on almost any vehicle, but especially that of a scramjet's performance. The Hyper-X project was to provide a real-world benchmark of the ground test data. The full scale X-43A engine would be operated in the wind tunnel, and then flown, and the data from its operation would then be compared with projections. If these matched, the wind tunnel data would be considered a reliable design tool for future scramjet. If there were significant differences, the reasons for these would have to be identified. Until such information was available, scramjets would lack the technological maturity to be considered for future space launch or high-speed atmospheric flight vehicles.

What would eventually become the Hyper-X project had its start within the NASP. This was ironic, as NASP project managers rejected the very idea of a short-term, limited-goal effort built around a subscale vehicle. It took a long time for them to finally accept this approach. Among reasons that the NASP program was focused on development of a full-scale test aircraft was the belief of many researchers and contractors that data from a subscale scramjet could not be scaled up to a full-size engine without introducing errors. Indeed, as time passed, the contractors found that they became less confident that they could predict general performance from specific data points. There were uncertainties in many data points, and those uncertainties changed. For these reasons, all of the contractors believed that only a prototype near-full-scale vehicle with a maximum speed above Mach 20 would give them real confidence in their performance predictions for a single-stage-to-orbit design.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Professionally converted for accurate flowing-text e-book format reproduction, this NASA report provides a comprehensive history of the X-43A Hyper-X (Hypersonic Experiment) program. In this NASA project, a supersonic combustion ramjet (scramjet) engine was flight tested on a subscale vehicle. The X-43A Hyper-X Research Vehicle (HXRV) was launched from a B-52B mothership, then boosted to the test speed by a modified Pegasus rocket first stage, called the Hyper-X Launch Vehicle (HXLV). Once at the proper speed and altitude, the X-43A separated from the booster, stabilized itself, and then the engine test began. Although wind-tunnel scramjet engine tests had begun in the late 1950s, before the Hyper-X program there had never been an actual in-flight test of such an engine integrated with an appropriate airframe. Thus, while the scramjet had successfully operated in the artificial airflow of wind tunnels, the concept had yet to be proven in "real air." These conditions meant changes in density and temperature, as well as changes in angle of attack and sideslip of a free-flying vehicle. A wind tunnel is limited in its ability to simulate these subtle factures, which have a major impact on almost any vehicle, but especially that of a scramjet's performance. The Hyper-X project was to provide a real-world benchmark of the ground test data. The full scale X-43A engine would be operated in the wind tunnel, and then flown, and the data from its operation would then be compared with projections. If these matched, the wind tunnel data would be considered a reliable design tool for future scramjet. If there were significant differences, the reasons for these would have to be identified. Until such information was available, scramjets would lack the technological maturity to be considered for future space launch or high-speed atmospheric flight vehicles.

What would eventually become the Hyper-X project had its start within the NASP. This was ironic, as NASP project managers rejected the very idea of a short-term, limited-goal effort built around a subscale vehicle. It took a long time for them to finally accept this approach. Among reasons that the NASP program was focused on development of a full-scale test aircraft was the belief of many researchers and contractors that data from a subscale scramjet could not be scaled up to a full-size engine without introducing errors. Indeed, as time passed, the contractors found that they became less confident that they could predict general performance from specific data points. There were uncertainties in many data points, and those uncertainties changed. For these reasons, all of the contractors believed that only a prototype near-full-scale vehicle with a maximum speed above Mach 20 would give them real confidence in their performance predictions for a single-stage-to-orbit design.

More books from Progressive Management

Cover of the book The Mosquito and the Colossus: Operation Just Cause through the Eyes of General Manuel Antonio Noriega - History of Panama, Canal, 1989 American Military Invasion, General Omar Torrijos by Progressive Management
Cover of the book With the I Marine Expeditionary Force in Desert Shield and Desert Storm: U.S. Marines in the Persian Gulf, 1990-1991 - Gulf War, Iraq, Kuwait, Warfighting, Psychological Warfare, Deception by Progressive Management
Cover of the book National Hurricane Operations Plan (FCM-P12-2013) - Weather Service Products, Aircraft Reconnaissance, Satellite Surveillance, Surface Radar Reporting, Data Buoys, Marine Broadcasts by Progressive Management
Cover of the book 21st Century Complete Guide to Electromagnetic Pulse (EMP): Nuclear Weapon Effects (NWE) and the Threat to the Electric Grid and Critical Infrastructure, HEMP, EMI, Microwave Devices by Progressive Management
Cover of the book Women on the Frontlines of Peace and Security with Foreword by Hillary Rodham Clinton and Leon Panetta: Women in the Military, Defense, Foreign Policy, NATO, Crisis, Special Operations Forces by Progressive Management
Cover of the book Enabling Others to Win in a Complex World: Maximizing Security Force Assistance Potential in the Regionally Aligned Brigade Combat Team - Iraqi Freedom, Relevance to Contemporary Environment by Progressive Management
Cover of the book The Rise and Fall of Dyna-Soar: A History of Air Force Hypersonic R&D, 1944-1963 - Pathfinding Effort to Develop a Transatmospheric Boost Glider and Spaceplane, Manned Military Space Program by Progressive Management
Cover of the book Consumer Guide to Computer Security: Fight Back Against Identity Theft, Malware, Hackers, Spyware, Spam, Botnets, Phishing - Online Privacy - Wireless, Laptop, Hotspot Security by Progressive Management
Cover of the book First to Cut: Trauma Lessons Learned in the Combat Zone, Real-World Scenarios of Patient Care and Surgery, Valuable Advice for Surgeons (Emergency War Surgery Series) by Progressive Management
Cover of the book On Alert: An Operational History of the United States Air Force Intercontinental Ballistic Missile (ICBM) Program, 1945-2011 - Atlas, Titan, Minuteman, Peacekeeper MX, Minuteman III, Nuclear Warhead by Progressive Management
Cover of the book The Story of the Noncommissioned Officer Corps: The Evolution and Development of the NCO Corps, Portraits of NCOs in Action, Selected Documents by Progressive Management
Cover of the book Remembering the Space Age: Proceedings of the 50th Anniversary Conference - Germans and Nazis, Mythmaking in Russia, American Culture and Music, Heinlein Influence, Apollo, Chinese Program by Progressive Management
Cover of the book Apollo and America's Moon Landing Program: Apollo 13 Accident Cortright Review Board Report with Findings and Recommendations about the In-flight Oxygen Tank Explosion - Lovell, Haise, and Swigert by Progressive Management
Cover of the book Nanoscience and Nanotechnology: NIST Center for Nanoscale Science and Technology (CNST) Reports - Graphene, Single-Electron Devices (SEDs), Nanowire, Photovoltaic by Progressive Management
Cover of the book Nuclear Fusion Energy Encyclopedia: ITER Project, Burning Plasma, American and International Fusion Research Facilities, Spinoffs, FESAC Reports, Toroidal Magnetic Fusion by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy