The Developments and the Applications of the Numerical Algorithms in Simulating the Incompressible Magnetohydrodynamics with Complex Boundaries and Free Surfaces

Nonfiction, Science & Nature, Science, Physics, Mechanics, Technology, Engineering, Mechanical
Cover of the book The Developments and the Applications of the Numerical Algorithms in Simulating the Incompressible Magnetohydrodynamics with Complex Boundaries and Free Surfaces by Jie Zhang, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Jie Zhang ISBN: 9789811063404
Publisher: Springer Singapore Publication: May 25, 2018
Imprint: Springer Language: English
Author: Jie Zhang
ISBN: 9789811063404
Publisher: Springer Singapore
Publication: May 25, 2018
Imprint: Springer
Language: English

This thesis presents an accurate and advanced numerical methodology to remedy difficulties such as direct numerical simulation of magnetohydrodynamic (MHD) flow in computational fluid dynamics (CFD), grid generation processes in tokamak fusion facilities, and the coupling between the surface tension force and Lorentz force in the metallurgical industry. In addition, on the basis of the numerical platform it establishes, it also investigates selected interesting topics, e.g. single bubble motion under the influence of either vertical or horizontal magnetic fields. Furthermore, it confirms the relation between the bubble’s path instability and wake instability, and observes the anisotropic (isotropic) effect of the vertical (horizontal) magnetic field on the vortex structures, which determines the dynamic behavior of the rising bubble.

The direct numerical simulation of magnetohydrodynamic (MHD) flows has proven difficult in the field of computational fluid dynamic (CFD) research, because it not only concerns the coupling of the equations governing the electromagnetic field and the fluid motion, but also calls for suitable numerical methods for computing the electromagnetic field. In tokamak fusion facilities, where the MHD effect is significant and the flow domain is complex, the process of grid generation requires considerable time and effort. Moreover, in the metallurgical industry, where multiphase MHD flows are usually encountered, the coupling between the surface tension force and Lorentz force adds to the difficulty of deriving direct numerical simulations.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This thesis presents an accurate and advanced numerical methodology to remedy difficulties such as direct numerical simulation of magnetohydrodynamic (MHD) flow in computational fluid dynamics (CFD), grid generation processes in tokamak fusion facilities, and the coupling between the surface tension force and Lorentz force in the metallurgical industry. In addition, on the basis of the numerical platform it establishes, it also investigates selected interesting topics, e.g. single bubble motion under the influence of either vertical or horizontal magnetic fields. Furthermore, it confirms the relation between the bubble’s path instability and wake instability, and observes the anisotropic (isotropic) effect of the vertical (horizontal) magnetic field on the vortex structures, which determines the dynamic behavior of the rising bubble.

The direct numerical simulation of magnetohydrodynamic (MHD) flows has proven difficult in the field of computational fluid dynamic (CFD) research, because it not only concerns the coupling of the equations governing the electromagnetic field and the fluid motion, but also calls for suitable numerical methods for computing the electromagnetic field. In tokamak fusion facilities, where the MHD effect is significant and the flow domain is complex, the process of grid generation requires considerable time and effort. Moreover, in the metallurgical industry, where multiphase MHD flows are usually encountered, the coupling between the surface tension force and Lorentz force adds to the difficulty of deriving direct numerical simulations.

More books from Springer Singapore

Cover of the book Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications by Jie Zhang
Cover of the book Biosensors Based on Sandwich Assays by Jie Zhang
Cover of the book Marine and Coastal Ecosystem Valuation, Institutions, and Policy in Southeast Asia by Jie Zhang
Cover of the book Native and Non-Native English Speaking Teachers in China by Jie Zhang
Cover of the book Science Education Research and Practice in Asia-Pacific and Beyond by Jie Zhang
Cover of the book Proceedings of The 20th Pacific Basin Nuclear Conference by Jie Zhang
Cover of the book The Flipped Classroom by Jie Zhang
Cover of the book Proceedings of 2nd International Conference on Intelligent Computing and Applications by Jie Zhang
Cover of the book Financing without Bank Loans by Jie Zhang
Cover of the book Advances in Medical Diagnostic Technology by Jie Zhang
Cover of the book Application of Thermo-fluid Processes in Energy Systems by Jie Zhang
Cover of the book Digital Childhoods by Jie Zhang
Cover of the book Advanced Computer Architecture by Jie Zhang
Cover of the book Progress in Nanoscale Characterization and Manipulation by Jie Zhang
Cover of the book Human Epigenomics by Jie Zhang
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy