Author: | ISBN: | 9783319118703 | |
Publisher: | Springer International Publishing | Publication: | November 18, 2015 |
Imprint: | Springer | Language: | English |
Author: | |
ISBN: | 9783319118703 |
Publisher: | Springer International Publishing |
Publication: | November 18, 2015 |
Imprint: | Springer |
Language: | English |
Tryptophan metabolism via kynurenine pathway plays a critical role in both health and a variety of human diseases. This book highlights the known associations between kynurenine pathway and various disease states, as well as examines the current status of drug development and clinical trials of compounds known to alter tryptophan metabolism. The research plays a critical role in molecular targeted therapies directed at altering the kynurenine pathway of tryptophan metabolism. The initial and rate-limiting step of tryptophan metabolism is mediated by one of two enzymes, tryptophan-2,3-dioxygenase (TDO; predominantly in the liver, but also in the brain) and indoleamine-2,3-dioxygenase (IDO; in a host of tissues in response to immune activation). Targeting the enzymes IDO and TDO, as well as other downstream effectors would therefore be likely to generate novel treatment options that would be helpful in a wide variety of clinical settings. This book provides a unique bridge between basic mechanistic understanding of the role of the kynurenine pathway with translational applications and clinical relevance. It will explore the indications that tryptophan metabolism is a potential biomarker of disease activity, can contribute to local and possibly systemic immune suppression in cancer, and is an attractive target for which a variety of inhibitors are readily available.
Tryptophan metabolism via kynurenine pathway plays a critical role in both health and a variety of human diseases. This book highlights the known associations between kynurenine pathway and various disease states, as well as examines the current status of drug development and clinical trials of compounds known to alter tryptophan metabolism. The research plays a critical role in molecular targeted therapies directed at altering the kynurenine pathway of tryptophan metabolism. The initial and rate-limiting step of tryptophan metabolism is mediated by one of two enzymes, tryptophan-2,3-dioxygenase (TDO; predominantly in the liver, but also in the brain) and indoleamine-2,3-dioxygenase (IDO; in a host of tissues in response to immune activation). Targeting the enzymes IDO and TDO, as well as other downstream effectors would therefore be likely to generate novel treatment options that would be helpful in a wide variety of clinical settings. This book provides a unique bridge between basic mechanistic understanding of the role of the kynurenine pathway with translational applications and clinical relevance. It will explore the indications that tryptophan metabolism is a potential biomarker of disease activity, can contribute to local and possibly systemic immune suppression in cancer, and is an attractive target for which a variety of inhibitors are readily available.