Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases

Nonfiction, Health & Well Being, Medical, Reference, Research
Cover of the book Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319124155
Publisher: Springer International Publishing Publication: February 23, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319124155
Publisher: Springer International Publishing
Publication: February 23, 2015
Imprint: Springer
Language: English

MILS-15 provides an up-to-date review of the metalloenzymes involved in the activation, production, and conversion of molecular oxygen as well as the functionalization of the chemically inert gases methane and ammonia. Found either in aerobes (humans, animals, plants, microorganisms) or in anaerobes (so-called “impossible bacteria”) these enzymes employ preferentially iron and copper at their active sites, in order to conserve energy by redox-driven proton pumps, to convert methane to methanol, or ammonia to hydroxylamine or other compounds. When it comes to the light-driven production of molecular oxygen, the tetranuclear manganese cluster of photosystem II must be regarded as the key player. However, dioxygen can also be produced in the dark, by heme iron-dependent dismutation of oxyanions. Metalloenzymes Mastering Dioxygen and Other Chewy Gasesis a vibrant research area based mainly on structural and microbial biology, inorganic biological chemistry, and environmental biochemistry. All this is covered in an authoritative manner in 7 stimulating chapters, written by 21 internationally recognized experts, and supported by nearly 1100 references, informative tables, and over 140 illustrations (many in color). MILS-15 provides excellent information for teaching; it is also closely related to MILS-14, The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment.

Peter M. H. Kroneck is a bioinorganic chemist who is exploring the role of transition metals in biology, with a focus on functional and structural aspects of microbial iron, copper, and molybdenum enzymes and their impact on the biogeochemical cyles of nitrogen and sulfur.

Martha E. Sosa Torres is an inorganic chemist, with special interests in magnetic properties of newly synthesized transition metal complexes and their reactivity towards molecular oxygen, applying kinetic, electrochemical, and spectroscopic techniques.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

MILS-15 provides an up-to-date review of the metalloenzymes involved in the activation, production, and conversion of molecular oxygen as well as the functionalization of the chemically inert gases methane and ammonia. Found either in aerobes (humans, animals, plants, microorganisms) or in anaerobes (so-called “impossible bacteria”) these enzymes employ preferentially iron and copper at their active sites, in order to conserve energy by redox-driven proton pumps, to convert methane to methanol, or ammonia to hydroxylamine or other compounds. When it comes to the light-driven production of molecular oxygen, the tetranuclear manganese cluster of photosystem II must be regarded as the key player. However, dioxygen can also be produced in the dark, by heme iron-dependent dismutation of oxyanions. Metalloenzymes Mastering Dioxygen and Other Chewy Gasesis a vibrant research area based mainly on structural and microbial biology, inorganic biological chemistry, and environmental biochemistry. All this is covered in an authoritative manner in 7 stimulating chapters, written by 21 internationally recognized experts, and supported by nearly 1100 references, informative tables, and over 140 illustrations (many in color). MILS-15 provides excellent information for teaching; it is also closely related to MILS-14, The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment.

Peter M. H. Kroneck is a bioinorganic chemist who is exploring the role of transition metals in biology, with a focus on functional and structural aspects of microbial iron, copper, and molybdenum enzymes and their impact on the biogeochemical cyles of nitrogen and sulfur.

Martha E. Sosa Torres is an inorganic chemist, with special interests in magnetic properties of newly synthesized transition metal complexes and their reactivity towards molecular oxygen, applying kinetic, electrochemical, and spectroscopic techniques.

More books from Springer International Publishing

Cover of the book Mapping Urban Practices Through Mobile Phone Data by
Cover of the book Intracranial Pressure and Brain Monitoring XV by
Cover of the book Engineering the Atom-Photon Interaction by
Cover of the book Brain Arteriovenous Malformations by
Cover of the book Social and Environmental Dimensions of Organizations and Supply Chains by
Cover of the book Max Weber's Vision for Bureaucracy by
Cover of the book Analytical and Computational Methods in Probability Theory by
Cover of the book The Dynamics of Judicial Independence by
Cover of the book Advances in Acoustics and Vibration by
Cover of the book Sinophone-Anglophone Cultural Duet by
Cover of the book Proceedings of the 16th International Conference on Hybrid Intelligent Systems (HIS 2016) by
Cover of the book Political Representation in France and Germany by
Cover of the book Trends in Mathematical Economics by
Cover of the book Analysis and Design of Networks-on-Chip Under High Process Variation by
Cover of the book Fuzzy Systems & Operations Research and Management by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy