Study on Fabrication and Performance of Metal-Supported Solid Oxide Fuel Cells

Nonfiction, Science & Nature, Technology, Material Science, Power Resources
Cover of the book Study on Fabrication and Performance of Metal-Supported Solid Oxide Fuel Cells by Yucun Zhou, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Yucun Zhou ISBN: 9789811066177
Publisher: Springer Singapore Publication: October 26, 2017
Imprint: Springer Language: English
Author: Yucun Zhou
ISBN: 9789811066177
Publisher: Springer Singapore
Publication: October 26, 2017
Imprint: Springer
Language: English

This book highlights the development of novel metal-supported solid oxide fuel cells (MS-SOFCs). It describes the metal-supported solid oxide fuel cells (MS-SOFCs) that consist of a microporous stainless steel support, nanoporous electrode composites and a thin ceramic electrolyte using the “tape casting-sintering-infiltrating” method. Further, it investigates the reaction kinetics of the fuel cells’ electrodes, structure–performance relationship and degradation mechanism. By optimizing the electrode materials, preparation process for the fuel cells, and nano-micro structure of the electrode, the resulting MS-SOFCs demonstrated (1) great output power densities at low temperatures, e.g., 1.02 W cm-2 at 600°C, when operating in humidified hydrogen fuels and air oxidants; (2) excellent long-term stability, e.g., a degradation rate of 1.3% kh-1 when measured at 650°C and 0.9 A cm-2 for 1500 h. The design presented offers a promising pathway for the development of low-cost, high power-density and long-term-stable SOFCs for energy conversion.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book highlights the development of novel metal-supported solid oxide fuel cells (MS-SOFCs). It describes the metal-supported solid oxide fuel cells (MS-SOFCs) that consist of a microporous stainless steel support, nanoporous electrode composites and a thin ceramic electrolyte using the “tape casting-sintering-infiltrating” method. Further, it investigates the reaction kinetics of the fuel cells’ electrodes, structure–performance relationship and degradation mechanism. By optimizing the electrode materials, preparation process for the fuel cells, and nano-micro structure of the electrode, the resulting MS-SOFCs demonstrated (1) great output power densities at low temperatures, e.g., 1.02 W cm-2 at 600°C, when operating in humidified hydrogen fuels and air oxidants; (2) excellent long-term stability, e.g., a degradation rate of 1.3% kh-1 when measured at 650°C and 0.9 A cm-2 for 1500 h. The design presented offers a promising pathway for the development of low-cost, high power-density and long-term-stable SOFCs for energy conversion.

More books from Springer Singapore

Cover of the book The Humanities in Contemporary Chinese Contexts by Yucun Zhou
Cover of the book Therapy of Social Medicine by Yucun Zhou
Cover of the book Creativity, Design Thinking and Interdisciplinarity by Yucun Zhou
Cover of the book Wave Propagation and Diffraction by Yucun Zhou
Cover of the book Flipped Classrooms for Legal Education by Yucun Zhou
Cover of the book Understanding Markov Chains by Yucun Zhou
Cover of the book Topology Optimization Theory for Laminar Flow by Yucun Zhou
Cover of the book Selected Papers from the Asia Conference on Economics & Business Research 2015 by Yucun Zhou
Cover of the book The Ownership of the Firm, Corporate Finance, and Derivatives by Yucun Zhou
Cover of the book Agile Information Business by Yucun Zhou
Cover of the book Group Model Building by Yucun Zhou
Cover of the book Basic and Applied Zooplankton Biology by Yucun Zhou
Cover of the book Natural Gas Markets in India by Yucun Zhou
Cover of the book Mapping Leisure by Yucun Zhou
Cover of the book China's Private Army by Yucun Zhou
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy