Structural Health Monitoring (SHM) in Aerospace Structures

Nonfiction, Science & Nature, Technology, Industrial Health & Safety, Engineering
Cover of the book Structural Health Monitoring (SHM) in Aerospace Structures by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780081001585
Publisher: Elsevier Science Publication: March 1, 2016
Imprint: Woodhead Publishing Language: English
Author:
ISBN: 9780081001585
Publisher: Elsevier Science
Publication: March 1, 2016
Imprint: Woodhead Publishing
Language: English

Structural Health Monitoring (SHM) in Aerospace Structures provides readers with the spectacular progress that has taken place over the last twenty years with respect to the area of Structural Health Monitoring (SHM). The widespread adoption of SHM could both significantly improve safety and reduce maintenance and repair expenses that are estimated to be about a quarter of an aircraft fleet’s operating costs.

The SHM field encompasses transdisciplinary areas, including smart materials, sensors and actuators, damage diagnosis and prognosis, signal and image processing algorithms, wireless intelligent sensing, data fusion, and energy harvesting. This book focuses on how SHM techniques are applied to aircraft structures with particular emphasis on composite materials, and is divided into four main parts.

Part One provides an overview of SHM technologies for damage detection, diagnosis, and prognosis in aerospace structures. Part Two moves on to analyze smart materials for SHM in aerospace structures, such as piezoelectric materials, optical fibers, and flexoelectricity. In addition, this also includes two vibration-based energy harvesting techniques for powering wireless sensors based on piezoelectric electromechanical coupling and diamagnetic levitation. Part Three explores innovative SHM technologies for damage diagnosis in aerospace structures. Chapters within this section include sparse array imaging techniques and phase array techniques for damage detection. The final section of the volume details innovative SHM technologies for damage prognosis in aerospace structures.

This book serves as a key reference for researchers working within this industry, academic, and government research agencies developing new systems for the SHM of aerospace structures and materials scientists.

  • Provides key information on the potential of SHM in reducing maintenance and repair costs
  • Analyzes current SHM technologies and sensing systems, highlighting the innovation in each area
  • Encompasses chapters on smart materials such as electroactive polymers and optical fibers
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Structural Health Monitoring (SHM) in Aerospace Structures provides readers with the spectacular progress that has taken place over the last twenty years with respect to the area of Structural Health Monitoring (SHM). The widespread adoption of SHM could both significantly improve safety and reduce maintenance and repair expenses that are estimated to be about a quarter of an aircraft fleet’s operating costs.

The SHM field encompasses transdisciplinary areas, including smart materials, sensors and actuators, damage diagnosis and prognosis, signal and image processing algorithms, wireless intelligent sensing, data fusion, and energy harvesting. This book focuses on how SHM techniques are applied to aircraft structures with particular emphasis on composite materials, and is divided into four main parts.

Part One provides an overview of SHM technologies for damage detection, diagnosis, and prognosis in aerospace structures. Part Two moves on to analyze smart materials for SHM in aerospace structures, such as piezoelectric materials, optical fibers, and flexoelectricity. In addition, this also includes two vibration-based energy harvesting techniques for powering wireless sensors based on piezoelectric electromechanical coupling and diamagnetic levitation. Part Three explores innovative SHM technologies for damage diagnosis in aerospace structures. Chapters within this section include sparse array imaging techniques and phase array techniques for damage detection. The final section of the volume details innovative SHM technologies for damage prognosis in aerospace structures.

This book serves as a key reference for researchers working within this industry, academic, and government research agencies developing new systems for the SHM of aerospace structures and materials scientists.

More books from Elsevier Science

Cover of the book Solid Rocket Propulsion Technology by
Cover of the book Environmental Assessment and Management in the Food Industry by
Cover of the book Co-operative and Energy Efficient Body Area and Wireless Sensor Networks for Healthcare Applications by
Cover of the book Current Developments in Biotechnology and Bioengineering by
Cover of the book The Self in Infancy by
Cover of the book Physiological and Clinical Aspects of Oxygenator Design by
Cover of the book Molecular Mechanisms of Hormone Actions on Behavior by
Cover of the book Atlas of the Human Body by
Cover of the book Archives by
Cover of the book Applied Drought Modeling, Prediction, and Mitigation by
Cover of the book The Boundaries of Consciousness: Neurobiology and Neuropathology by
Cover of the book Computers for Librarians by
Cover of the book Cancer by
Cover of the book Nanomaterial and Polymer Membranes by
Cover of the book Building a Practical Information Security Program by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy