Spectroscopy and Modeling of Biomolecular Building Blocks

Nonfiction, Science & Nature, Science, Physics, Spectrum Analysis, Chemistry, Physical & Theoretical
Cover of the book Spectroscopy and Modeling of Biomolecular Building Blocks by Jean-Pierre Schermann, Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Jean-Pierre Schermann ISBN: 9780080558226
Publisher: Elsevier Science Publication: October 16, 2007
Imprint: Elsevier Science Language: English
Author: Jean-Pierre Schermann
ISBN: 9780080558226
Publisher: Elsevier Science
Publication: October 16, 2007
Imprint: Elsevier Science
Language: English

Spectroscopy and Modeling of Biomolecular Building Blocks presents an overview of recent advances in the intertwining of the following research fields: photon and electron spectroscopy, quantum chemistry, modelling and mass-spectrometry. The coupling of these disciplines offers a new point of view to the understanding of isolated elementary building blocks of biomolecules and their assemblies. It allows the unambiguous separation between intrinsic properties of biomolecular systems and those induced by the presence of their environment.

The first chapters provide background in modelling (I), frequency-resolved spectroscopy using microwave, infrared and UV photons, time-resolved spectroscopy in the femtosecond domain and energy-resolved electron spectroscopy (II) and production of gas-phase neutral and ionic biomolecular species, mass-spectrometry, ion mobility and BIRD techniques (III).

Chapter IV is devoted to case studies of gas-phase experimental investigations coupled to quantum or classical calculations. The topics are structural studies of nucleobases and oligonucleotides, peptides and proteins, sugars; neuromolecules; non-covalent complexes; chiral systems, interactions of low-energy electrons with biomolecules in the radiation chemistry context and very large gas-phase biomolecular systems.

The fifth chapter concerns the link between gas-phase and liquid-phase. Different treatments of solvation are illustrated through examples pointing out the influence of progressive addition of water molecules upon properties of nucleobases, peptides, sugars and neuromolecules.

  • Offer a new perspective to the understanding of isolated elementary building blocks of bio molecules
  • Includes case studies of experimental investigations coupled to quantum or classical calculations
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Spectroscopy and Modeling of Biomolecular Building Blocks presents an overview of recent advances in the intertwining of the following research fields: photon and electron spectroscopy, quantum chemistry, modelling and mass-spectrometry. The coupling of these disciplines offers a new point of view to the understanding of isolated elementary building blocks of biomolecules and their assemblies. It allows the unambiguous separation between intrinsic properties of biomolecular systems and those induced by the presence of their environment.

The first chapters provide background in modelling (I), frequency-resolved spectroscopy using microwave, infrared and UV photons, time-resolved spectroscopy in the femtosecond domain and energy-resolved electron spectroscopy (II) and production of gas-phase neutral and ionic biomolecular species, mass-spectrometry, ion mobility and BIRD techniques (III).

Chapter IV is devoted to case studies of gas-phase experimental investigations coupled to quantum or classical calculations. The topics are structural studies of nucleobases and oligonucleotides, peptides and proteins, sugars; neuromolecules; non-covalent complexes; chiral systems, interactions of low-energy electrons with biomolecules in the radiation chemistry context and very large gas-phase biomolecular systems.

The fifth chapter concerns the link between gas-phase and liquid-phase. Different treatments of solvation are illustrated through examples pointing out the influence of progressive addition of water molecules upon properties of nucleobases, peptides, sugars and neuromolecules.

More books from Elsevier Science

Cover of the book Business Continuity from Preparedness to Recovery by Jean-Pierre Schermann
Cover of the book Radiometric Calibration: Theory and Methods by Jean-Pierre Schermann
Cover of the book Materials for Energy Conversion Devices by Jean-Pierre Schermann
Cover of the book Thermoforming of Single and Multilayer Laminates by Jean-Pierre Schermann
Cover of the book Project Finance for the International Petroleum Industry by Jean-Pierre Schermann
Cover of the book Entropic Invariants of Two-Phase Flows by Jean-Pierre Schermann
Cover of the book Advances in Immunology by Jean-Pierre Schermann
Cover of the book Nonclinical Development of Novel Biologics, Biosimilars, Vaccines and Specialty Biologics by Jean-Pierre Schermann
Cover of the book Electrical Engineering Principles for Technicians by Jean-Pierre Schermann
Cover of the book Fluoroelastomers Handbook by Jean-Pierre Schermann
Cover of the book Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices by Jean-Pierre Schermann
Cover of the book Solar Cell Device Physics by Jean-Pierre Schermann
Cover of the book Handbook of Anxiety and Fear by Jean-Pierre Schermann
Cover of the book Modern Chemical Enhanced Oil Recovery by Jean-Pierre Schermann
Cover of the book High Temperature Coatings by Jean-Pierre Schermann
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy