Author: | M. S. Child | ISBN: | 9780191653858 |
Publisher: | OUP Oxford | Publication: | August 21, 2014 |
Imprint: | OUP Oxford | Language: | English |
Author: | M. S. Child |
ISBN: | 9780191653858 |
Publisher: | OUP Oxford |
Publication: | August 21, 2014 |
Imprint: | OUP Oxford |
Language: | English |
The second edition of an established graduate text, this book complements the material for a typical advanced graduate course in quantum mechanics by showing how the underlying classical structure is reflected in quantum mechanical interference and tunnelling phenomena, and in the energy and angular momentum distributions of quantum mechanical states in the moderate to large (10-100) quantum number regime. Applications include accurate quantization techniques for a variety of tunnelling and curve-crossing problems and of non-separable bound systems; direct inversion of molecular scattering and spectroscopic data; wavepacket propagation techniques; and the prediction and interpretation of elastic, inelastic and chemically reactive scattering. The main text concentrates less on the mathematical foundations than on the global influence of the classical phase space structures on the quantum mechanical observables. Further mathematical detail is contained in the appendices and worked problem sets are included as an aid to the student.
The second edition of an established graduate text, this book complements the material for a typical advanced graduate course in quantum mechanics by showing how the underlying classical structure is reflected in quantum mechanical interference and tunnelling phenomena, and in the energy and angular momentum distributions of quantum mechanical states in the moderate to large (10-100) quantum number regime. Applications include accurate quantization techniques for a variety of tunnelling and curve-crossing problems and of non-separable bound systems; direct inversion of molecular scattering and spectroscopic data; wavepacket propagation techniques; and the prediction and interpretation of elastic, inelastic and chemically reactive scattering. The main text concentrates less on the mathematical foundations than on the global influence of the classical phase space structures on the quantum mechanical observables. Further mathematical detail is contained in the appendices and worked problem sets are included as an aid to the student.