Representation Theory of Finite Monoids

Nonfiction, Science & Nature, Mathematics, Algebra, Statistics
Cover of the book Representation Theory of Finite Monoids by Benjamin Steinberg, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Benjamin Steinberg ISBN: 9783319439327
Publisher: Springer International Publishing Publication: December 9, 2016
Imprint: Springer Language: English
Author: Benjamin Steinberg
ISBN: 9783319439327
Publisher: Springer International Publishing
Publication: December 9, 2016
Imprint: Springer
Language: English

This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory,  and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields.  

Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford –Munn–Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory,  and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields.  

Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford –Munn–Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion.

More books from Springer International Publishing

Cover of the book Study on the Optimal Allocation of Water Resources Systems and the Comprehensive Utilization of Water Resources in Arid-Semiarid Multiple Mining Areas by Benjamin Steinberg
Cover of the book Introduction to Transport Phenomena Modeling by Benjamin Steinberg
Cover of the book Methodological Advances in Research on Emotion and Education by Benjamin Steinberg
Cover of the book Ethiopian Yearbook of International Law 2017 by Benjamin Steinberg
Cover of the book More Math Into LaTeX by Benjamin Steinberg
Cover of the book Lignocellulosic Composite Materials by Benjamin Steinberg
Cover of the book Novel Aspects of Diamond by Benjamin Steinberg
Cover of the book Understanding Transitional Justice by Benjamin Steinberg
Cover of the book Engineering Applications of Computational Fluid Dynamics by Benjamin Steinberg
Cover of the book Pollination Biology, Vol.1 by Benjamin Steinberg
Cover of the book Surprise: An Emotion? by Benjamin Steinberg
Cover of the book Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products by Benjamin Steinberg
Cover of the book Corporate Social Responsibility and Reporting in Sports Organizations by Benjamin Steinberg
Cover of the book Information Systems for Industry 4.0 by Benjamin Steinberg
Cover of the book Energy, Complexity and Wealth Maximization by Benjamin Steinberg
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy