Radionuclide Contamination and Remediation Through Plants

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Technology, Environmental
Cover of the book Radionuclide Contamination and Remediation Through Plants by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319076652
Publisher: Springer International Publishing Publication: July 14, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319076652
Publisher: Springer International Publishing
Publication: July 14, 2014
Imprint: Springer
Language: English

This book focuses on the mechanistic (microscopic) understanding of radionuclide uptake by plants in contaminated soils and potential use of phytoremediation. The key features concern radionuclide toxicity in plants, how the radioactive materials are absorbed by plants, and how the plants cope with the toxic responses. The respective chapters examine soil classification, natural plant selection, speciation of actinides, kinetic modeling, and case studies on cesium uptake after radiation accidents.

Radionuclide contaminants pose serious problems for biological systems, due to their chemical toxicity and radiological effects. The processes by which radionuclides can be incorporated into vegetation can either originate from activity interception by external plant surfaces (either directly from the atmosphere or from resuspended material), or through uptake of radionuclides via the root system. Subsequent transfer of toxic elements to the human food chain is a concrete danger. Therefore, the molecular mechanisms and genetic basis of transport into and within plants needs to be understood for two reasons: The effectiveness of radionuclide uptake into crop plants – so-called transfer coefficient – is a prerequisite for the calculation of dose due to the food path. On the other hand, efficient radionuclide transfer into plants can be made use of for decontamination of land – so-called phytoremediation, the direct use of living, green plants for in situ removal of pollutants from the environment or to reduce their concentrations to harmless levels.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book focuses on the mechanistic (microscopic) understanding of radionuclide uptake by plants in contaminated soils and potential use of phytoremediation. The key features concern radionuclide toxicity in plants, how the radioactive materials are absorbed by plants, and how the plants cope with the toxic responses. The respective chapters examine soil classification, natural plant selection, speciation of actinides, kinetic modeling, and case studies on cesium uptake after radiation accidents.

Radionuclide contaminants pose serious problems for biological systems, due to their chemical toxicity and radiological effects. The processes by which radionuclides can be incorporated into vegetation can either originate from activity interception by external plant surfaces (either directly from the atmosphere or from resuspended material), or through uptake of radionuclides via the root system. Subsequent transfer of toxic elements to the human food chain is a concrete danger. Therefore, the molecular mechanisms and genetic basis of transport into and within plants needs to be understood for two reasons: The effectiveness of radionuclide uptake into crop plants – so-called transfer coefficient – is a prerequisite for the calculation of dose due to the food path. On the other hand, efficient radionuclide transfer into plants can be made use of for decontamination of land – so-called phytoremediation, the direct use of living, green plants for in situ removal of pollutants from the environment or to reduce their concentrations to harmless levels.

More books from Springer International Publishing

Cover of the book Unraveling the Voynich Codex by
Cover of the book Brain Arteriovenous Malformations by
Cover of the book Proactive and Dynamic Network Defense by
Cover of the book Hybrid Artificial Intelligent Systems by
Cover of the book Philosophy of Olfactory Perception by
Cover of the book Nano-Biomaterials For Ophthalmic Drug Delivery by
Cover of the book Tumors of the Jugular Foramen by
Cover of the book Preparing the Public Health Workforce by
Cover of the book The Formation and Disruption of Black Hole Jets by
Cover of the book Recent Trends in Data Science and Soft Computing by
Cover of the book Mobile Cloud Visual Media Computing by
Cover of the book Modeling and Simulation in HPC and Cloud Systems by
Cover of the book Functional Dynamic Equations on Time Scales by
Cover of the book Heart Failure by
Cover of the book Advanced Computing Strategies for Engineering by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy