Python: Advanced Predictive Analytics

Gain practical insights by exploiting data in your business to build advanced predictive modeling applications

Nonfiction, Computers, Advanced Computing, Programming, Data Modeling & Design, Artificial Intelligence, General Computing
Cover of the book Python: Advanced Predictive Analytics by Joseph J, Ashish Kumar, Packt Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Joseph J, Ashish Kumar ISBN: 9781788993036
Publisher: Packt Publishing Publication: December 27, 2017
Imprint: Packt Publishing Language: English
Author: Joseph J, Ashish Kumar
ISBN: 9781788993036
Publisher: Packt Publishing
Publication: December 27, 2017
Imprint: Packt Publishing
Language: English

Gain practical insights by exploiting data in your business to build advanced predictive modeling applications

Key Features

  • A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices
  • Learn how to use popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering
  • Master open source Python tools to build sophisticated predictive models

Book Description

Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form; it needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications. This book is your guide to getting started with predictive analytics using Python.

You'll balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and NumPy. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates explains how these methods work. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring to life the insights of predictive modeling.

Finally, you will learn best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. The course provides you with highly practical content from the following Packt books:

  1. Learning Predictive Analytics with Python

  2. Mastering Predictive Analytics with Python

What you will learn

  • Understand the statistical and mathematical concepts behind predictive analytics algorithms and implement them using Python libraries
  • Get to know various methods for importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and NumPy
  • Master the use of Python notebooks for exploratory data analysis and rapid prototyping
  • Get to grips with applying regression, classification, clustering, and deep learning algorithms
  • Discover advanced methods to analyze structured and unstructured data
  • Visualize the performance of models and the insights they produce
  • Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis

Who this book is for

This book is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move on from a conceptual understanding of advanced analytics and become an expert in designing and building advanced analytics solutions using Python. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about predictive analytics algorithms, this book will also help you.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Gain practical insights by exploiting data in your business to build advanced predictive modeling applications

Key Features

Book Description

Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form; it needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications. This book is your guide to getting started with predictive analytics using Python.

You'll balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and NumPy. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates explains how these methods work. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring to life the insights of predictive modeling.

Finally, you will learn best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. The course provides you with highly practical content from the following Packt books:

  1. Learning Predictive Analytics with Python

  2. Mastering Predictive Analytics with Python

What you will learn

Who this book is for

This book is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move on from a conceptual understanding of advanced analytics and become an expert in designing and building advanced analytics solutions using Python. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about predictive analytics algorithms, this book will also help you.

More books from Packt Publishing

Cover of the book Magento Search Engine Optimization by Joseph J, Ashish Kumar
Cover of the book Getting Started with Containerization by Joseph J, Ashish Kumar
Cover of the book HTML5 Boilerplate Web Development by Joseph J, Ashish Kumar
Cover of the book Machine Learning with Spark - Second Edition by Joseph J, Ashish Kumar
Cover of the book SketchUp 2014 for Architectural Visualization Second Edition by Joseph J, Ashish Kumar
Cover of the book Learning Behavior-driven Development with JavaScript by Joseph J, Ashish Kumar
Cover of the book Learning Raspbian by Joseph J, Ashish Kumar
Cover of the book Microsoft BizTalk Server 2010 Patterns by Joseph J, Ashish Kumar
Cover of the book Expert AWS Development by Joseph J, Ashish Kumar
Cover of the book Redux Quick Start Guide by Joseph J, Ashish Kumar
Cover of the book Performance Testing With JMeter 2.9 by Joseph J, Ashish Kumar
Cover of the book cPanel User Guide and Tutorial by Joseph J, Ashish Kumar
Cover of the book Implementing Oracle Integration Cloud Service by Joseph J, Ashish Kumar
Cover of the book Practical Test-Driven Development using C# 7 by Joseph J, Ashish Kumar
Cover of the book Go Web Development Cookbook by Joseph J, Ashish Kumar
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy