Purification of Serratia sp. phosphatase, identification/localisation of the two phosphatase isoenzymes and large scale production of the enzyme

Nonfiction, Health & Well Being, Medical, Medical Science, Microbiology
Cover of the book Purification of Serratia sp. phosphatase, identification/localisation of the two phosphatase isoenzymes and large scale production of the enzyme by Holger Pflicke, GRIN Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Holger Pflicke ISBN: 9783638226516
Publisher: GRIN Publishing Publication: October 28, 2003
Imprint: GRIN Publishing Language: English
Author: Holger Pflicke
ISBN: 9783638226516
Publisher: GRIN Publishing
Publication: October 28, 2003
Imprint: GRIN Publishing
Language: English

Research Paper (undergraduate) from the year 2003 in the subject Biology - Micro- and Molecular Biology, grade: 2 (B), Dresden Technical University (Institute for Nutrition and Biological Procedures), language: English, abstract: This study is part of the project 'Bioremediation of Nuclear Wastes by Biomineralization Processes' which uses an established biomineralization process (using Serratia sp.) for the removal of uranyl ions as hydrogen uranyl phosphate (HUP). HUP will be tested as a host crystal for intercalative ion exchange or co-crystallative removal of problematic nuclide fission products (FP) like 60Co, 90Sr and 137Cs using 'cold' isotopes in Birmingham in parallel to tests in Korea using real wastes. Metal uptake is mediated via a cell-bound phosphatase that liberates inorganic phosphate, which precipitates with heavy metals as cell-bound metal phosphate, thus depositing the uranyl phosphate 'host crystal' for the sequestration of the FP. The phosphatase is localised periplasmically and also within the extracellular polymeric matrix (EPM). Successful operation of the process depends on the correct localization of the enzyme into the extracellular matrix. It can be speculated that the periplasmic enzyme pool is a reservoir awaiting export and other studies have suggested the presence of two phosphatase isoenzymes, which differ in their chemical- and radiostability but are not yet assigned to either phosphatase pool or EPM since they are immunologically cross-reactive. The two phosphatases (designated CPI and CPII) are very similar but distinguished simply using cationic (CPII retained) and anionic (CPI retained) ion exchange resins. This study will concentrate on the production of phosphatase CPI and CPII which will be differentiated by enzyme partial purification (exocellularly-localised and residual whole-cell enzymes) followed by quantification of their cation exchange (CPII) and anion exchange (CPI) resin binding. Large scale biomass preparation for bulk enzyme production for enzyme structural studies (X ray crystallography using the Korean Synchrotron Facility) will use the 600 L facility in the pilot plant in the School of Chemical Engineering University of Birmingham. The overall objective of the project is to promote the localisation of the more radiostable isoenzyme (CPI) into the exocellular matrix for maximum production of uranyl phosphate in the presence of the high-active nuclide fission products and to understand this radiostability in terms of the associated water in the active site pocket of this novel phosphohydrolase.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Research Paper (undergraduate) from the year 2003 in the subject Biology - Micro- and Molecular Biology, grade: 2 (B), Dresden Technical University (Institute for Nutrition and Biological Procedures), language: English, abstract: This study is part of the project 'Bioremediation of Nuclear Wastes by Biomineralization Processes' which uses an established biomineralization process (using Serratia sp.) for the removal of uranyl ions as hydrogen uranyl phosphate (HUP). HUP will be tested as a host crystal for intercalative ion exchange or co-crystallative removal of problematic nuclide fission products (FP) like 60Co, 90Sr and 137Cs using 'cold' isotopes in Birmingham in parallel to tests in Korea using real wastes. Metal uptake is mediated via a cell-bound phosphatase that liberates inorganic phosphate, which precipitates with heavy metals as cell-bound metal phosphate, thus depositing the uranyl phosphate 'host crystal' for the sequestration of the FP. The phosphatase is localised periplasmically and also within the extracellular polymeric matrix (EPM). Successful operation of the process depends on the correct localization of the enzyme into the extracellular matrix. It can be speculated that the periplasmic enzyme pool is a reservoir awaiting export and other studies have suggested the presence of two phosphatase isoenzymes, which differ in their chemical- and radiostability but are not yet assigned to either phosphatase pool or EPM since they are immunologically cross-reactive. The two phosphatases (designated CPI and CPII) are very similar but distinguished simply using cationic (CPII retained) and anionic (CPI retained) ion exchange resins. This study will concentrate on the production of phosphatase CPI and CPII which will be differentiated by enzyme partial purification (exocellularly-localised and residual whole-cell enzymes) followed by quantification of their cation exchange (CPII) and anion exchange (CPI) resin binding. Large scale biomass preparation for bulk enzyme production for enzyme structural studies (X ray crystallography using the Korean Synchrotron Facility) will use the 600 L facility in the pilot plant in the School of Chemical Engineering University of Birmingham. The overall objective of the project is to promote the localisation of the more radiostable isoenzyme (CPI) into the exocellular matrix for maximum production of uranyl phosphate in the presence of the high-active nuclide fission products and to understand this radiostability in terms of the associated water in the active site pocket of this novel phosphohydrolase.

More books from GRIN Publishing

Cover of the book The Democratisation of Japan after World War II by Holger Pflicke
Cover of the book Thelma & Louise (1990): Western Myth with gender change by Holger Pflicke
Cover of the book The state as an actor in global politics by Holger Pflicke
Cover of the book Population and Security: Water disputes - on the way to a major global problem? by Holger Pflicke
Cover of the book Influence factors of strategy by Holger Pflicke
Cover of the book The Third Crusade and its impact on England by Holger Pflicke
Cover of the book Columbus's Role in the Destruction of the Population of the Indigenous Peoples of the New World During His First Two Voyages (1492-1496) by Holger Pflicke
Cover of the book Does smoking increase the risk of lumbar disc prolapse in individuals aged from 20 to 40 years? by Holger Pflicke
Cover of the book The role of monstrous bodies in Tod Browning's FREAKS by Holger Pflicke
Cover of the book The speech of Pope Urban II 1095 at Clermont in the versions of the Gesta Francorum and Baldric of Dol by Holger Pflicke
Cover of the book The Australian airline industry and the case of OzJet by Holger Pflicke
Cover of the book Evidence-Based Practice - A critical discussion of occupational therapy practice with a focus on assessments by Holger Pflicke
Cover of the book Portfolio Investment Strategy - Investment brief for wealthy private customer by Holger Pflicke
Cover of the book Minimum Wage Legislation in Australia by Holger Pflicke
Cover of the book 'Take her from where she stands, straight to the Island' by Holger Pflicke
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy