Author: | G. Halevi, R. Weill | ISBN: | 9789401112505 |
Publisher: | Springer Netherlands | Publication: | December 6, 2012 |
Imprint: | Springer | Language: | English |
Author: | G. Halevi, R. Weill |
ISBN: | 9789401112505 |
Publisher: | Springer Netherlands |
Publication: | December 6, 2012 |
Imprint: | Springer |
Language: | English |
Process planning determines how a product is to be manufactured and is therefore a key element in the manufacturing process. It plays a major part in determining the cost of components and affects all factory activities, company competitiveness, production planning, production efficiency and product quality. It is a crucial link between design and manufacturing. There are several levels of process planning activities. Early in product engineering and development, process planning is responsible for determining the general method of production. The selected general method of production affects the design constraints. In the last stages of design, the designer has to consider ease of manufacturing in order for it to be economic. The part design data is transferred from engineering to manufacturing and process planners develop the detailed work package for manufacturing a part. Dimensions and tolerances are determined for each stage of processing of the workpiece. Process planning determines the sequence of operations and utilization of machine tools. Cutting tools, fixtures, gauges and other accessory tooling are also specified. Feeds, speeds and other parameters of the metal cutting and forming processes are determined.
Process planning determines how a product is to be manufactured and is therefore a key element in the manufacturing process. It plays a major part in determining the cost of components and affects all factory activities, company competitiveness, production planning, production efficiency and product quality. It is a crucial link between design and manufacturing. There are several levels of process planning activities. Early in product engineering and development, process planning is responsible for determining the general method of production. The selected general method of production affects the design constraints. In the last stages of design, the designer has to consider ease of manufacturing in order for it to be economic. The part design data is transferred from engineering to manufacturing and process planners develop the detailed work package for manufacturing a part. Dimensions and tolerances are determined for each stage of processing of the workpiece. Process planning determines the sequence of operations and utilization of machine tools. Cutting tools, fixtures, gauges and other accessory tooling are also specified. Feeds, speeds and other parameters of the metal cutting and forming processes are determined.