Phosphoinositides II: The Diverse Biological Functions

Nonfiction, Health & Well Being, Medical, Medical Science, Genetics, Specialties, Internal Medicine, Neuroscience
Cover of the book Phosphoinositides II: The Diverse Biological Functions by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789400730151
Publisher: Springer Netherlands Publication: February 28, 2012
Imprint: Springer Language: English
Author:
ISBN: 9789400730151
Publisher: Springer Netherlands
Publication: February 28, 2012
Imprint: Springer
Language: English

Phosphoinositides play a major role in cellular signaling and membrane organization. During the last three decades we have learned that enzymes turning over phosphoinositides control vital physiological processes and are involved in the initiation and progression of cancer, inflammation, neurodegenerative, cardiovascular, metabolic disease and more. In two volumes, this book elucidates the crucial mechanisms that control the dynamics of phosphoinositide conversion. Starting out from phosphatidylinositol, a chain of lipid kinases collaborates to generate the oncogenic lipid phosphatidylinositol(3,4,5)-trisphosphate. For every phosphate group added, there are specific lipid kinases – and phosphatases to remove it. Additionally, phospholipases can cleave off the inositol head group and generate poly-phosphoinositols, which act as soluble signals in the cytosol. Volume II extends into the role of phosphoinositides in membrane organization and vesicular traffic. Endocytosis and exocytosis are modulated by phosphoinositides, which determine the fate and activity of integral membrane proteins. Phosphatidylinositol(4,5)-bisphosphate is a prominent flag in the plasma membrane, while phosphatidylinositol-3-phosphate decorates early endosomes. The Golgi apparatus is rich in phosphatidylinositol-4-phosphate, stressed cells increase phosphatidylinositol(3,5)-bisphosphate, and the nucleus has a phosphoinositide metabolism of its own. Phosphoinositide-dependent signaling cascades and the spatial organization of distinct phosphoinositide species are required in organelle function, fission and fusion, membrane channel regulation, cytoskeletal rearrangements, adhesion processes, and thus orchestrate complex cellular responses including growth, proliferation, differentiation, cell motility, and cell polarization.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Phosphoinositides play a major role in cellular signaling and membrane organization. During the last three decades we have learned that enzymes turning over phosphoinositides control vital physiological processes and are involved in the initiation and progression of cancer, inflammation, neurodegenerative, cardiovascular, metabolic disease and more. In two volumes, this book elucidates the crucial mechanisms that control the dynamics of phosphoinositide conversion. Starting out from phosphatidylinositol, a chain of lipid kinases collaborates to generate the oncogenic lipid phosphatidylinositol(3,4,5)-trisphosphate. For every phosphate group added, there are specific lipid kinases – and phosphatases to remove it. Additionally, phospholipases can cleave off the inositol head group and generate poly-phosphoinositols, which act as soluble signals in the cytosol. Volume II extends into the role of phosphoinositides in membrane organization and vesicular traffic. Endocytosis and exocytosis are modulated by phosphoinositides, which determine the fate and activity of integral membrane proteins. Phosphatidylinositol(4,5)-bisphosphate is a prominent flag in the plasma membrane, while phosphatidylinositol-3-phosphate decorates early endosomes. The Golgi apparatus is rich in phosphatidylinositol-4-phosphate, stressed cells increase phosphatidylinositol(3,5)-bisphosphate, and the nucleus has a phosphoinositide metabolism of its own. Phosphoinositide-dependent signaling cascades and the spatial organization of distinct phosphoinositide species are required in organelle function, fission and fusion, membrane channel regulation, cytoskeletal rearrangements, adhesion processes, and thus orchestrate complex cellular responses including growth, proliferation, differentiation, cell motility, and cell polarization.

More books from Springer Netherlands

Cover of the book Purinergic Regulation of Respiratory Diseases by
Cover of the book Offshore Site Investigation by
Cover of the book Assessment of Biodiversity for Improved Forest Planning by
Cover of the book Mexican American and Immigrant Poverty in the United States by
Cover of the book Eco-Library Design by
Cover of the book Grounding Global Climate Change by
Cover of the book Evidence-Based Approaches in Positive Education by
Cover of the book Building Bioethics by
Cover of the book Vulnerability and Adaptation to Climate Change by
Cover of the book Cancer Drug Discovery by
Cover of the book Arsenic and Old Mustard: Chemical Problems in the Destruction of Old Arsenical and `Mustard' Munitions by
Cover of the book Johan Huizinga 1872–1972 by
Cover of the book Examination and Analysis of Starch and Starch Products by
Cover of the book Reducing Breast Cancer Risk in Women by
Cover of the book Neoclassical Economic Theory, 1870 to 1930 by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy