Nuts And Bolts: Taking Apart Special Relativity

Nonfiction, Science & Nature, Science, Physics, General Physics
Cover of the book Nuts And Bolts: Taking Apart Special Relativity by Jim Spinosa, Jim Spinosa
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Jim Spinosa ISBN: 9781458020260
Publisher: Jim Spinosa Publication: October 6, 2010
Imprint: Smashwords Edition Language: English
Author: Jim Spinosa
ISBN: 9781458020260
Publisher: Jim Spinosa
Publication: October 6, 2010
Imprint: Smashwords Edition
Language: English

"Nuts and Bolts:Taking Apart Special Relativity" is an attempt to disprove Einstein's theory of special relativity. Written to appeal to a wide audience, "Nuts and Bolts" explains the formidable equations of special relativity in unprecedented detail. When Einstein's equations and thought experiments are subjected to exacting scrutiny,
the incoherence of the former and the contradictions in the latter become apparent. Einstein's formicary is overturned, and the formerly ensorcelled experience no formic side effects. It’s difficult to believe that Einstein’s theories are wrong. It’s even more difficult to believe that any errors in his theories were not detected decades ago by the plethora of physicists and philosophers who have studied his theories. It’s difficult to believe that in the theory of special relativity there is at least one instance in which the common denominator for two algebraic fractions is incorrectly determined. With general relativity, the case is different. The errors appear to be in the tensor calculus itself that Einstein uses and not in the calculations that he makes using the tensor calculus. It seems that if we are going to say that general relativity is wrong we are also going to have to say that the Riemann-Christoffel curvature tensor is incorrect. Also, we will have to question the validity of the tensor calculus operations known as contraction and covariant differentiation. Here the issues become more complex. Do we want to deny the mathematicians the right to use entities such as “special” tensors of rank two? When two “special” tensors of rank two are multiplied the result is the number one (a scalar of rank zero) instead of the tensor of rank four that is required by the laws of tensor multiplication. Other errors are more subtle; for instance, in the justification of covariant differentiation the second derivatives of the coefficients of “ordinary” tensors are shown not to be always equal to zero, yet later in process it seems to be implied that the second derivatives of “ordinary” tensors are always equal zero.
Perhaps, that was Einstein’s genius choosing an obscure mathematics—tensor calculus—that physicists would be unfamiliar with. Then he would somehow have had to work his way backward from the result he wanted—Newton’s law of planetary motion with one extra term that could be used to explain the precession of Mercury and the other planets. Next, by choosing the appropriate coefficients for his particular version of the Pythagorean Theorem—his version of a formula for measuring distance in his particular space—he could make the flawed tensor calculus produce the results he wanted. The physicists who questioned his work might have thought “It is difficult to believe that tensor calculus is flawed. If there were any flaws in it they already would have been spotted by mathematicians.”
What part do philosophers play in all this particularly the philosopher of science Karl Popper? It’s as though Karl Popper employed a simple, yet effective deception. He seems to be an honest, hardworking, straightforward philosopher of science searching for clarity in science. Yet, strangely he does not seem to condemn some unscientific theories and the unscientific theories he does condemn seem completely unaffected by his condemnation.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

"Nuts and Bolts:Taking Apart Special Relativity" is an attempt to disprove Einstein's theory of special relativity. Written to appeal to a wide audience, "Nuts and Bolts" explains the formidable equations of special relativity in unprecedented detail. When Einstein's equations and thought experiments are subjected to exacting scrutiny,
the incoherence of the former and the contradictions in the latter become apparent. Einstein's formicary is overturned, and the formerly ensorcelled experience no formic side effects. It’s difficult to believe that Einstein’s theories are wrong. It’s even more difficult to believe that any errors in his theories were not detected decades ago by the plethora of physicists and philosophers who have studied his theories. It’s difficult to believe that in the theory of special relativity there is at least one instance in which the common denominator for two algebraic fractions is incorrectly determined. With general relativity, the case is different. The errors appear to be in the tensor calculus itself that Einstein uses and not in the calculations that he makes using the tensor calculus. It seems that if we are going to say that general relativity is wrong we are also going to have to say that the Riemann-Christoffel curvature tensor is incorrect. Also, we will have to question the validity of the tensor calculus operations known as contraction and covariant differentiation. Here the issues become more complex. Do we want to deny the mathematicians the right to use entities such as “special” tensors of rank two? When two “special” tensors of rank two are multiplied the result is the number one (a scalar of rank zero) instead of the tensor of rank four that is required by the laws of tensor multiplication. Other errors are more subtle; for instance, in the justification of covariant differentiation the second derivatives of the coefficients of “ordinary” tensors are shown not to be always equal to zero, yet later in process it seems to be implied that the second derivatives of “ordinary” tensors are always equal zero.
Perhaps, that was Einstein’s genius choosing an obscure mathematics—tensor calculus—that physicists would be unfamiliar with. Then he would somehow have had to work his way backward from the result he wanted—Newton’s law of planetary motion with one extra term that could be used to explain the precession of Mercury and the other planets. Next, by choosing the appropriate coefficients for his particular version of the Pythagorean Theorem—his version of a formula for measuring distance in his particular space—he could make the flawed tensor calculus produce the results he wanted. The physicists who questioned his work might have thought “It is difficult to believe that tensor calculus is flawed. If there were any flaws in it they already would have been spotted by mathematicians.”
What part do philosophers play in all this particularly the philosopher of science Karl Popper? It’s as though Karl Popper employed a simple, yet effective deception. He seems to be an honest, hardworking, straightforward philosopher of science searching for clarity in science. Yet, strangely he does not seem to condemn some unscientific theories and the unscientific theories he does condemn seem completely unaffected by his condemnation.

More books from General Physics

Cover of the book Reductionism by Jim Spinosa
Cover of the book Un bosone da Ginevra by Jim Spinosa
Cover of the book Diffraction Physics by Jim Spinosa
Cover of the book An Introduction to Physical Oncology by Jim Spinosa
Cover of the book The Poetry of Physics and the Physics of Poetry by Jim Spinosa
Cover of the book Es muss nicht immer Einstein sein by Jim Spinosa
Cover of the book Appunti per l'università: Fisica Subatomica by Jim Spinosa
Cover of the book L’Inertie de l’énergie et ses conséquences by Jim Spinosa
Cover of the book Edexcel A Level Physics Student Book 2 by Jim Spinosa
Cover of the book The Advanced Physics Series: Electrical Circuits by Jim Spinosa
Cover of the book Design in Nature by Jim Spinosa
Cover of the book Transport in Nanostructures by Jim Spinosa
Cover of the book Galileo by Jim Spinosa
Cover of the book Geometry and Light by Jim Spinosa
Cover of the book Verkehrsdynamik und -simulation by Jim Spinosa
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy