Nonmeasurable Sets and Functions

Nonfiction, Science & Nature, Mathematics, Set Theory, Mathematical Analysis
Cover of the book Nonmeasurable Sets and Functions by Alexander Kharazishvili, Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Alexander Kharazishvili ISBN: 9780080479767
Publisher: Elsevier Science Publication: May 29, 2004
Imprint: Elsevier Science Language: English
Author: Alexander Kharazishvili
ISBN: 9780080479767
Publisher: Elsevier Science
Publication: May 29, 2004
Imprint: Elsevier Science
Language: English

The book is devoted to various constructions of sets which are nonmeasurable with respect to invariant (more generally, quasi-invariant) measures. Our starting point is the classical Vitali theorem stating the existence of subsets of the real line which are not measurable in the Lebesgue sense. This theorem stimulated the development of the following interesting topics in mathematics:

  1. Paradoxical decompositions of sets in finite-dimensional Euclidean spaces;
  2. The theory of non-real-valued-measurable cardinals;
  3. The theory of invariant (quasi-invariant)
    extensions of invariant (quasi-invariant) measures.

These topics are under consideration in the book. The role of nonmeasurable sets (functions) in point set theory and real analysis is underlined and various classes of such sets (functions) are investigated . Among them there are: Vitali sets, Bernstein sets, Sierpinski sets, nontrivial solutions of the Cauchy functional equation, absolutely nonmeasurable sets in uncountable groups, absolutely nonmeasurable additive functions, thick uniform subsets of the plane, small nonmeasurable sets, absolutely negligible sets, etc. The importance of properties of nonmeasurable sets for various aspects of the measure extension problem is shown. It is also demonstrated that there are close relationships between the existence of nonmeasurable sets and some deep questions of axiomatic set theory, infinite combinatorics, set-theoretical topology, general theory of commutative groups. Many open attractive problems are formulated concerning nonmeasurable sets and functions.

· highlights the importance of nonmeasurable sets (functions) for general measure extension problem.
· Deep connections of the topic with set theory, real analysis, infinite combinatorics, group theory and geometry of Euclidean spaces shown and underlined.
· self-contained and accessible for a wide audience of potential readers.
· Each chapter ends with exercises which provide valuable additional information about nonmeasurable sets and functions.
· Numerous open problems and questions.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The book is devoted to various constructions of sets which are nonmeasurable with respect to invariant (more generally, quasi-invariant) measures. Our starting point is the classical Vitali theorem stating the existence of subsets of the real line which are not measurable in the Lebesgue sense. This theorem stimulated the development of the following interesting topics in mathematics:

  1. Paradoxical decompositions of sets in finite-dimensional Euclidean spaces;
  2. The theory of non-real-valued-measurable cardinals;
  3. The theory of invariant (quasi-invariant)
    extensions of invariant (quasi-invariant) measures.

These topics are under consideration in the book. The role of nonmeasurable sets (functions) in point set theory and real analysis is underlined and various classes of such sets (functions) are investigated . Among them there are: Vitali sets, Bernstein sets, Sierpinski sets, nontrivial solutions of the Cauchy functional equation, absolutely nonmeasurable sets in uncountable groups, absolutely nonmeasurable additive functions, thick uniform subsets of the plane, small nonmeasurable sets, absolutely negligible sets, etc. The importance of properties of nonmeasurable sets for various aspects of the measure extension problem is shown. It is also demonstrated that there are close relationships between the existence of nonmeasurable sets and some deep questions of axiomatic set theory, infinite combinatorics, set-theoretical topology, general theory of commutative groups. Many open attractive problems are formulated concerning nonmeasurable sets and functions.

· highlights the importance of nonmeasurable sets (functions) for general measure extension problem.
· Deep connections of the topic with set theory, real analysis, infinite combinatorics, group theory and geometry of Euclidean spaces shown and underlined.
· self-contained and accessible for a wide audience of potential readers.
· Each chapter ends with exercises which provide valuable additional information about nonmeasurable sets and functions.
· Numerous open problems and questions.

More books from Elsevier Science

Cover of the book Advanced Mass Spectrometry for Food Safety and Quality by Alexander Kharazishvili
Cover of the book Materials Science and Engineering of Carbon: Fundamentals by Alexander Kharazishvili
Cover of the book Enhancing Learning and Teaching Through Student Feedback in Engineering by Alexander Kharazishvili
Cover of the book Advances in Microbial Physiology by Alexander Kharazishvili
Cover of the book Product Design Modeling using CAD/CAE by Alexander Kharazishvili
Cover of the book Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems by Alexander Kharazishvili
Cover of the book Hormones and Reproduction of Vertebrates, Volume 2 by Alexander Kharazishvili
Cover of the book Oil Spill Science and Technology by Alexander Kharazishvili
Cover of the book Computational Mechanics in Structural Engineering by Alexander Kharazishvili
Cover of the book Emerging Paradigms in Urban Mobility by Alexander Kharazishvili
Cover of the book Innovative Approaches in Drug Discovery by Alexander Kharazishvili
Cover of the book Textiles for Cold Weather Apparel by Alexander Kharazishvili
Cover of the book Advances in Parasitology by Alexander Kharazishvili
Cover of the book Light and Skin Interactions by Alexander Kharazishvili
Cover of the book Bioimpedance and Bioelectricity Basics by Alexander Kharazishvili
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy