Neutron Applications in Materials for Energy

Nonfiction, Science & Nature, Technology, Nanotechnology, Science, Physics, Energy
Cover of the book Neutron Applications in Materials for Energy by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319066561
Publisher: Springer International Publishing Publication: January 23, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319066561
Publisher: Springer International Publishing
Publication: January 23, 2015
Imprint: Springer
Language: English

Neutron Applications in Materials for Energy collects results and conclusions of recent neutron-based investigations of materials that are important in the development of sustainable energy. Chapters are authored by leading scientists with hands-on experience in the field, providing overviews, recent highlights, and case-studies to illustrate the applicability of one or more neutron-based techniques of analysis. The theme follows energy production, storage, and use, but each chapter, or section, can also be read independently, with basic theory and instrumentation for neutron scattering being outlined in the introductory chapter.

Whilst neutron scattering is extensively used to understand properties of condensed matter, neutron techniques are exceptionally-well suited to studying how the transport and binding of energy and charge-carrying molecules and ions are related to their dynamics and the material’s crystal structure. These studies extend to in situ and in operando in some cases. The species of interest in leading energy-technologies include H2, H+, and Li+ which have particularly favourable neutron-scattering properties that render these techniques of analysis ideal for such studies and consequently, neutron-based analysis is common-place for hydrogen storage, fuel-cell, catalysis, and battery materials. Similar research into the functionality of solar cell, nuclear, and CO2 capture/storage materials rely on other unique aspects of neutron scattering and again show how structure and dynamics provide an understanding of the material stability and the binding and mobility of species of interest within these materials.

 Scientists and students looking for methods to help them understand the atomic-level mechanisms and behaviour underpinning the performance characteristics of energy materials will find Neutron Applications in Materials for Energy a valuable resource, whilst the wider audience of sustainable energy scientists, and newcomers to neutron scattering should find this a useful reference.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Neutron Applications in Materials for Energy collects results and conclusions of recent neutron-based investigations of materials that are important in the development of sustainable energy. Chapters are authored by leading scientists with hands-on experience in the field, providing overviews, recent highlights, and case-studies to illustrate the applicability of one or more neutron-based techniques of analysis. The theme follows energy production, storage, and use, but each chapter, or section, can also be read independently, with basic theory and instrumentation for neutron scattering being outlined in the introductory chapter.

Whilst neutron scattering is extensively used to understand properties of condensed matter, neutron techniques are exceptionally-well suited to studying how the transport and binding of energy and charge-carrying molecules and ions are related to their dynamics and the material’s crystal structure. These studies extend to in situ and in operando in some cases. The species of interest in leading energy-technologies include H2, H+, and Li+ which have particularly favourable neutron-scattering properties that render these techniques of analysis ideal for such studies and consequently, neutron-based analysis is common-place for hydrogen storage, fuel-cell, catalysis, and battery materials. Similar research into the functionality of solar cell, nuclear, and CO2 capture/storage materials rely on other unique aspects of neutron scattering and again show how structure and dynamics provide an understanding of the material stability and the binding and mobility of species of interest within these materials.

 Scientists and students looking for methods to help them understand the atomic-level mechanisms and behaviour underpinning the performance characteristics of energy materials will find Neutron Applications in Materials for Energy a valuable resource, whilst the wider audience of sustainable energy scientists, and newcomers to neutron scattering should find this a useful reference.

More books from Springer International Publishing

Cover of the book Religious Freedom at Risk by
Cover of the book Heterodox Investment Theory by
Cover of the book Morality, Governance, and Social Institutions by
Cover of the book Perioperative Medicine – Current Controversies by
Cover of the book Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth by
Cover of the book Saudi Aramco 2030 by
Cover of the book An Introduction to Soil Mechanics by
Cover of the book The Economics of Addictive Behaviours Volume III by
Cover of the book Democracy in the EMU in the Aftermath of the Crisis by
Cover of the book Regulating and Supervising European Financial Markets by
Cover of the book Creative Economies in Peripheral Regions by
Cover of the book Smart Energy Research. At the Crossroads of Engineering, Economics, and Computer Science by
Cover of the book Property, Family and the Irish Welfare State by
Cover of the book Digital Libraries and Multimedia Archives by
Cover of the book Evaluation Method of Energy Consumption in Logistic Warehouse Systems by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy