Neural Tissue Biomechanics

Nonfiction, Health & Well Being, Medical, Specialties, Internal Medicine, Neuroscience, Science & Nature, Technology, Engineering
Cover of the book Neural Tissue Biomechanics by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642138904
Publisher: Springer Berlin Heidelberg Publication: July 23, 2011
Imprint: Springer Language: English
Author:
ISBN: 9783642138904
Publisher: Springer Berlin Heidelberg
Publication: July 23, 2011
Imprint: Springer
Language: English

Damage to the central nervous system resulting from pathological mechanical loading can occur as a result of trauma or disease. Such injuries lead to significant disability and mortality. The peripheral nervous system, while also subject to injury from trauma and disease, also transduces physiological loading to give rise to sensation, and mechanotransduction is also thought to play a role in neural development and growth. This book gives a complete and quantitative description of the fundamental mechanical properties of neural tissues, and their responses to both physiological and pathological loading. This book reviews the methods used to characterize the nonlinear viscoelastic properties of central and peripheral neural tissues, and the mathematical and sophisticated computational models used to describe this behaviour. Mechanisms and models of neural injury from both trauma and disease are reviewed from the molecular to macroscopic scale. The book provides a comprehensive picture of the mechanical and biological response of neural tissues to the full spectrum of mechanical loading to which they are exposed. This book provides a comprehensive reference for professionals involved in pre prevention of injury to the nervous system, whether this arises from trauma or disease.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Damage to the central nervous system resulting from pathological mechanical loading can occur as a result of trauma or disease. Such injuries lead to significant disability and mortality. The peripheral nervous system, while also subject to injury from trauma and disease, also transduces physiological loading to give rise to sensation, and mechanotransduction is also thought to play a role in neural development and growth. This book gives a complete and quantitative description of the fundamental mechanical properties of neural tissues, and their responses to both physiological and pathological loading. This book reviews the methods used to characterize the nonlinear viscoelastic properties of central and peripheral neural tissues, and the mathematical and sophisticated computational models used to describe this behaviour. Mechanisms and models of neural injury from both trauma and disease are reviewed from the molecular to macroscopic scale. The book provides a comprehensive picture of the mechanical and biological response of neural tissues to the full spectrum of mechanical loading to which they are exposed. This book provides a comprehensive reference for professionals involved in pre prevention of injury to the nervous system, whether this arises from trauma or disease.

More books from Springer Berlin Heidelberg

Cover of the book Biomedical Engineering Systems and Technologies by
Cover of the book Office-Based Infertility Practice by
Cover of the book Transportation, Traffic Safety and Health — Man and Machine by
Cover of the book Nano/Micro Biotechnology by
Cover of the book Topics in Dental Biochemistry by
Cover of the book Arbeiten und gesund bleiben by
Cover of the book Production Economics by
Cover of the book Anders leben - anders sterben by
Cover of the book Robust Manufacturing Control by
Cover of the book Laser Processing and Chemistry by
Cover of the book Lectures in Isotope Geology by
Cover of the book New Concepts in Maxillofacial Bone Surgery by
Cover of the book Paediatric Oncology by
Cover of the book The Human Hippocampus by
Cover of the book Sensory Nerves by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy