NASA Space Technology Report: Low Cost Robotic Lunar Lander (COMPASS Final Report), Launch Options including SpaceX, Subsystems, Costs and Risks

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book NASA Space Technology Report: Low Cost Robotic Lunar Lander (COMPASS Final Report), Launch Options including SpaceX, Subsystems, Costs and Risks by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781311953001
Publisher: Progressive Management Publication: September 3, 2014
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781311953001
Publisher: Progressive Management
Publication: September 3, 2014
Imprint: Smashwords Edition
Language: English

The goal of this COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) session was to use Total Low Cost as the objective function, and design a Robotic Lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10 percent of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

1.0 Executive Summary * 2.0 Study Background and Assumptions * 2.1 Introduction * 2.2 Assumptions and Approach * 2.2.1 Survey Starting Points * 2.2.2 Fault Tolerance * 2.3 Growth, Contingency and Margin Policy * 2.4 Mission Description * 2.4.1 Mission Analysis Assumptions * 2.4.2 Main Mission Trajectory Options * 2.4.3 Mission Analysis Event Timeline * 2.4.4 Mission Trajectory Details * 2.5 Small Launch Vehicle Details * 2.5.1 Minotaur * 2.5.2 SpaceX—Alternate Launch Vehicle Option * 2.6 System Design Trade Space: Preliminary Analysis * 2.7 Baseline System Design * 3.0 Baseline Design * 3.1 Top Level Design (MEL and PEL) * 3.1.1 Master Equipment List (MEL) * 3.1.2 Power Equipment List (PEL) * 3.2 System Level Summary * 3.3 Design Concept Drawing and Description * 4.0 Subsystem Breakdown * 4.1 Communications * 4.1.1 Communications Requirements * 4.1.2 Communications Assumptions * 4.1.3 Communications Design and MEL * 4.1.4 Communications Trades * 4.1.5 Communications Analytical Methods * 4.1.6 Communications Risk Inputs * 4.1.7 Communications Recommendation * 4.2 Avionics * 4.2.1 Avionics Requirements * 4.2.2 Avionics Assumptions * 4.2.3 Avionics Design and MEL * 4.2.4 Avionics Trades * 4.2.5 Avionics Analytical Methods * 4.2.6 Avionics Risk Inputs * 4.2.7 Avionics Recommendation * 4.3 Electrical Power System * 4.3.1 Electrical Power Requirements * 4.3.2 Electrical Power Assumptions * 4.3.3 Electrical Power Design and MEL * 4.3.4 Electrical Power Trades * 4.3.5 Electrical Power Analytical Methods * 4.3.6 Electrical Power Risk Inputs * 4.3.7 Electrical Power Recommendation * 4.4 Structures and Mechanisms * 4.4.1 Structures and Mechanisms Requirements * 4.4.2 Structures and Mechanisms Assumptions * 4.4.3 Structures and Mechanisms Design and MEL * 4.4.4 Structures and Mechanisms Trades * 4.4.5 Structures and Mechanisms Analytical Methods * 4.4.6 Structures and Mechanisms Risk Inputs * 4.4.7 Structures and Mechanisms Recommendation * 4.5 Propulsion and Propellant Management * 4.5.1 Propulsion and Propellant Management Requirements * 4.5.2 Propulsion and Propellant Management Assumptions * 4.5.3 Propulsion and Propellant Management Analytical Methods * 4.5.4 Propulsion and Propellant Management Design and MEL * 4.5.5 Propulsion and Propellant Management Trades * 4.5.6 Propulsion and Propellant Management Risk Inputs * 4.5.7 Propulsion and Propellant Management Recommendation * 4.6 Thermal Control * 4.6.1 Thermal Requirements * 4.6.2 Thermal Assumptions * 4.6.3 Thermal Design and MEL * 4.6.4 Thermal Trades * 4.6.5 Thermal Analytical Methods * 4.6.6 Thermal Risk Inputs * 4.6.7 Thermal Recommendation * 5.0 Cost, Risk and Reliability * 5.1 Costing: Baseline Chemical Lunar Lander * 5.2 Cost Modeling Assumptions * 5.3 Cost Modeling Approach * 6.0 Trade Space Iterations * 6.1 Case 1: Off-the-Shelf Chemical Propulsion * 6.2 Case 2: Off-the-Shelf Electric Propulsion * 6.3 Case 3: Advanced Direct Drive Electric Propulsion * Appendix A.—Acronyms and Abbreviations * Appendix B.—Case 1 Rendered Design Drawings * Appendix C.—Study Participants * Bibliography

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The goal of this COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) session was to use Total Low Cost as the objective function, and design a Robotic Lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10 percent of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

1.0 Executive Summary * 2.0 Study Background and Assumptions * 2.1 Introduction * 2.2 Assumptions and Approach * 2.2.1 Survey Starting Points * 2.2.2 Fault Tolerance * 2.3 Growth, Contingency and Margin Policy * 2.4 Mission Description * 2.4.1 Mission Analysis Assumptions * 2.4.2 Main Mission Trajectory Options * 2.4.3 Mission Analysis Event Timeline * 2.4.4 Mission Trajectory Details * 2.5 Small Launch Vehicle Details * 2.5.1 Minotaur * 2.5.2 SpaceX—Alternate Launch Vehicle Option * 2.6 System Design Trade Space: Preliminary Analysis * 2.7 Baseline System Design * 3.0 Baseline Design * 3.1 Top Level Design (MEL and PEL) * 3.1.1 Master Equipment List (MEL) * 3.1.2 Power Equipment List (PEL) * 3.2 System Level Summary * 3.3 Design Concept Drawing and Description * 4.0 Subsystem Breakdown * 4.1 Communications * 4.1.1 Communications Requirements * 4.1.2 Communications Assumptions * 4.1.3 Communications Design and MEL * 4.1.4 Communications Trades * 4.1.5 Communications Analytical Methods * 4.1.6 Communications Risk Inputs * 4.1.7 Communications Recommendation * 4.2 Avionics * 4.2.1 Avionics Requirements * 4.2.2 Avionics Assumptions * 4.2.3 Avionics Design and MEL * 4.2.4 Avionics Trades * 4.2.5 Avionics Analytical Methods * 4.2.6 Avionics Risk Inputs * 4.2.7 Avionics Recommendation * 4.3 Electrical Power System * 4.3.1 Electrical Power Requirements * 4.3.2 Electrical Power Assumptions * 4.3.3 Electrical Power Design and MEL * 4.3.4 Electrical Power Trades * 4.3.5 Electrical Power Analytical Methods * 4.3.6 Electrical Power Risk Inputs * 4.3.7 Electrical Power Recommendation * 4.4 Structures and Mechanisms * 4.4.1 Structures and Mechanisms Requirements * 4.4.2 Structures and Mechanisms Assumptions * 4.4.3 Structures and Mechanisms Design and MEL * 4.4.4 Structures and Mechanisms Trades * 4.4.5 Structures and Mechanisms Analytical Methods * 4.4.6 Structures and Mechanisms Risk Inputs * 4.4.7 Structures and Mechanisms Recommendation * 4.5 Propulsion and Propellant Management * 4.5.1 Propulsion and Propellant Management Requirements * 4.5.2 Propulsion and Propellant Management Assumptions * 4.5.3 Propulsion and Propellant Management Analytical Methods * 4.5.4 Propulsion and Propellant Management Design and MEL * 4.5.5 Propulsion and Propellant Management Trades * 4.5.6 Propulsion and Propellant Management Risk Inputs * 4.5.7 Propulsion and Propellant Management Recommendation * 4.6 Thermal Control * 4.6.1 Thermal Requirements * 4.6.2 Thermal Assumptions * 4.6.3 Thermal Design and MEL * 4.6.4 Thermal Trades * 4.6.5 Thermal Analytical Methods * 4.6.6 Thermal Risk Inputs * 4.6.7 Thermal Recommendation * 5.0 Cost, Risk and Reliability * 5.1 Costing: Baseline Chemical Lunar Lander * 5.2 Cost Modeling Assumptions * 5.3 Cost Modeling Approach * 6.0 Trade Space Iterations * 6.1 Case 1: Off-the-Shelf Chemical Propulsion * 6.2 Case 2: Off-the-Shelf Electric Propulsion * 6.3 Case 3: Advanced Direct Drive Electric Propulsion * Appendix A.—Acronyms and Abbreviations * Appendix B.—Case 1 Rendered Design Drawings * Appendix C.—Study Participants * Bibliography

More books from Progressive Management

Cover of the book Survivability on the Island of Spice: The Development of the UH-60 Blackhawk Helicopter and its Baptism of Fire in Operation Urgent Fury on Grenada - Effect of Poor Intelligence Flying into Enemy Fire by Progressive Management
Cover of the book Nuclear Weapons Encyclopedia: The Effects of Nuclear Weapons (Glasstone and Dolan Reference on Atomic Explosions), Nuclear Matters Handbook (Practical Guide to American Nuclear Delivery Systems) by Progressive Management
Cover of the book ATF State Laws and Published Ordinances: Firearms, 2009-2010, 30th Edition - Assists in Complying with Federal and State Firearms and Gun Control Laws - Part 1 by Progressive Management
Cover of the book Putin's Propaganda War: Is He Winning? 2018 Analysis of Belarus, Kazakhstan, Latvia, France, Germany, and Finland Highlighting Source of Russian Influence, Fighting Kremlin's Information War by Progressive Management
Cover of the book Factors Shaping Japan's Foreign Policy Toward the Senkaku Islands: Chinese Encroachments and Domestic Japanese Politics, Leaders Koizumi, Abe, Ishihara and Noda, Constitution and International Law by Progressive Management
Cover of the book Commanders' Smartbook Equipment Catalog Army Natick Soldier RD and E Center (NSRDEC) - Field Services, Kitchen and Food, Latrines, Shelters, Heaters, Generators and Power Distribution Systems by Progressive Management
Cover of the book Marine Advisors With the Vietnamese Marine Corps: Selected Documents prepared by the U.S. Marine Advisory Unit, Naval Advisory Group, Vietnam War History by Progressive Management
Cover of the book Extending the Operational Life of the International Space Station (ISS) Until 2024 - Overly Optimistic Cost Projections, Technical Risks and Issues, Human Health Issues, Cargo Transport, Solar Panels by Progressive Management
Cover of the book The U.S. Counterterrorism Strategy: Addressing Radical Ideologies - Study Focusing on Al-Qaeda and ISIS Islamism and Violent Extremism, Evaluation of Preemptive and Preventive Approaches by Progressive Management
Cover of the book Transforming the Army with Mission Command: Consideration of Kotter's Eight-Stage Process of Creating Major Change, Creating a Framework for Command Philosophy by Progressive Management
Cover of the book Preventing Catastrophe: U.S. Policy Options for Management of Nuclear Weapons in South Asia - India and Pakistan Proliferation Threat, Strategic Delivery Capability, Conflict in Kashmir, NPT by Progressive Management
Cover of the book A History of Suction-Type Laminar-Flow Control with Emphasis on Flight Research: From the 1930s to the X-21 and the Boeing 757, Swept Wings, Noise, Insect Contamination, Ice Particles, Supersonic by Progressive Management
Cover of the book Marines in World War II Commemorative Series: From Makin to Bougainville: Marine Raiders in the Pacific War - Weapons and Equipment, Raider Training Center, Enogai, Bairoko, Operation Cleanslate by Progressive Management
Cover of the book Arab Threat Perceptions and the Future of the U.S. Military Presence in the Middle East: Egypt, Jordan, and Gulf Monarchies, Syrian Civil War, Iran War, al-Qaeda, Terrorism, ISIS, Sunni, Iranians by Progressive Management
Cover of the book Fire Effects of Bombing Attacks: The Firebombing and Destruction of Hamburg and Dresden in World War II by Incendiary Attack, Fire Storms, Effectiveness of Barriers, Japanese Fire Bombing by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy