NASA Lessons Learned in Engineering: Marshall Engineers Recount Problems and Solutions on Saturn V Rocket, Apollo, Space Shuttle, SSME, Hubble Space Telescope, X-33, Other Vehicles and Systems

Nonfiction, Science & Nature, Technology, Quality Control, Aeronautics & Astronautics
Cover of the book NASA Lessons Learned in Engineering: Marshall Engineers Recount Problems and Solutions on Saturn V Rocket, Apollo, Space Shuttle, SSME, Hubble Space Telescope, X-33, Other Vehicles and Systems by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781310620089
Publisher: Progressive Management Publication: August 13, 2014
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781310620089
Publisher: Progressive Management
Publication: August 13, 2014
Imprint: Smashwords Edition
Language: English

This report is a fascinating and authoritative compilation of lessons learned in approximately 55 years of engineering experience by three Marshall Space Flight Center engineers, James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on lessons learned that has been taught at Marshall. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this report is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations.

Programs and systems discussed in this report include: Redstone, Jupiter, Saturn, Saturn V, Apollo, HEAO, Skylab, HST, Space Shuttle, X-33, Space Station, SLI, SSME Space Shuttle Main Engine, Tethered Satellite, STS-1 aerodynamic anomaly and solution, SRM ignition overpressure, Saturn V rate gyro deflection, aft skirt failure, Gravity Probe, SSME fatigue issues, SRB reentry acoustics, Saturn V sloshing computer program, ISS load paths, Saturn V structural capability, Saturn V hold down post liftoff loads, Shuttle liftoff loads, Solar Array Flight Experiment (SAFE) Day-Night Frequency Shift, SRM Thrust Bucket and SSME Throttling (Lofting vs. Throttling), and more.

INTRODUCTION * DISCUSSION OF LESSONS LEARNED PRINCIPLES * Principle I. System Success Depends on the Creativity, Judgment, and Decision-Making Skills of the People * Lesson 1. People are Prime Resource for Project Success * Lesson 2. People Skills are Mandatory for Achieving Successful Products * Principle II. Space Systems are Challenging, High Performance Systems * Lesson 3. Demand for High Performance Leads to High Power Densities and High Sensitivities * Principle III. Everything Acts as a System (Whole) * Lesson 4. Systems Engineering and Technical Integration is the Linchpin of Project Success * Lesson 5. Risk Management * Lesson 6. All Design is a Paradox, a Balancing Act * Principle IV. The System is Governed by the Laws of Physics * Lesson 7. Physics of the Problems Reigns Supreme * Lesson 8. Engineering is a Logical Thought Process * Lesson 9. Mathematics is the Same! * Lesson 10. Fundamentals of Launch Vehicle Design * Principle V. Robust Design is Based on Our Understanding of Sensitivities, Uncertainties, and Margins * Lesson 11. Robustness * Lesson 12. Understanding Sensitivities and Uncertainties is Mandatory * Lesson 13. Program Margins Must be Adequate * Principle VI. Project Success is Determined by Life Cycle Considerations * Lesson 14. The Design Space is Constrained Based on Where You are in the Life Cycle * Lesson 15. Concept Selection and Design Process * Lesson 16. Requirements Drive the Design * Lesson 17. Designing for the -Ilities and Cost * Principle VII. Testing and Verification Have an Essential Role in Development * Lesson 18. Hardware and Data Have the Answers * Lesson 19. Can Test Now or You Will Test Later * Lesson 20. Independent Analysis, Test, and Design Keys to Success * Lesson 21. All Analyses and Tests are Limited * Lesson 22. Scaling is a Major Issue * Principle VIII. Anticipating and Surfacing Problems Must be Encouraged * Lesson 23. Must Hear and Understand All Technical and Programmatic Opinions * Lesson 24. There are No Small Changes!

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This report is a fascinating and authoritative compilation of lessons learned in approximately 55 years of engineering experience by three Marshall Space Flight Center engineers, James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on lessons learned that has been taught at Marshall. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this report is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations.

Programs and systems discussed in this report include: Redstone, Jupiter, Saturn, Saturn V, Apollo, HEAO, Skylab, HST, Space Shuttle, X-33, Space Station, SLI, SSME Space Shuttle Main Engine, Tethered Satellite, STS-1 aerodynamic anomaly and solution, SRM ignition overpressure, Saturn V rate gyro deflection, aft skirt failure, Gravity Probe, SSME fatigue issues, SRB reentry acoustics, Saturn V sloshing computer program, ISS load paths, Saturn V structural capability, Saturn V hold down post liftoff loads, Shuttle liftoff loads, Solar Array Flight Experiment (SAFE) Day-Night Frequency Shift, SRM Thrust Bucket and SSME Throttling (Lofting vs. Throttling), and more.

INTRODUCTION * DISCUSSION OF LESSONS LEARNED PRINCIPLES * Principle I. System Success Depends on the Creativity, Judgment, and Decision-Making Skills of the People * Lesson 1. People are Prime Resource for Project Success * Lesson 2. People Skills are Mandatory for Achieving Successful Products * Principle II. Space Systems are Challenging, High Performance Systems * Lesson 3. Demand for High Performance Leads to High Power Densities and High Sensitivities * Principle III. Everything Acts as a System (Whole) * Lesson 4. Systems Engineering and Technical Integration is the Linchpin of Project Success * Lesson 5. Risk Management * Lesson 6. All Design is a Paradox, a Balancing Act * Principle IV. The System is Governed by the Laws of Physics * Lesson 7. Physics of the Problems Reigns Supreme * Lesson 8. Engineering is a Logical Thought Process * Lesson 9. Mathematics is the Same! * Lesson 10. Fundamentals of Launch Vehicle Design * Principle V. Robust Design is Based on Our Understanding of Sensitivities, Uncertainties, and Margins * Lesson 11. Robustness * Lesson 12. Understanding Sensitivities and Uncertainties is Mandatory * Lesson 13. Program Margins Must be Adequate * Principle VI. Project Success is Determined by Life Cycle Considerations * Lesson 14. The Design Space is Constrained Based on Where You are in the Life Cycle * Lesson 15. Concept Selection and Design Process * Lesson 16. Requirements Drive the Design * Lesson 17. Designing for the -Ilities and Cost * Principle VII. Testing and Verification Have an Essential Role in Development * Lesson 18. Hardware and Data Have the Answers * Lesson 19. Can Test Now or You Will Test Later * Lesson 20. Independent Analysis, Test, and Design Keys to Success * Lesson 21. All Analyses and Tests are Limited * Lesson 22. Scaling is a Major Issue * Principle VIII. Anticipating and Surfacing Problems Must be Encouraged * Lesson 23. Must Hear and Understand All Technical and Programmatic Opinions * Lesson 24. There are No Small Changes!

More books from Progressive Management

Cover of the book 2018 Department of Homeland Security Cybersecurity Strategy: Five Pillar Framework of Risk Identification, Vulnerability Reduction, Threat Reduction, Consequence Mitigation, and Cyberspace Outcomes by Progressive Management
Cover of the book Insurgent Uprising: An Unconventional Warfare Wargame - Special Operations Command (USSOCOM) Practical Exercise to Reinforce UW Training, Special Forces COIN Against Guerrillas by Progressive Management
Cover of the book Engineering the Organization: Is the U.S. Army Corps of Engineers (USACE) Doing it Right? The Army Engineer Brigade, Project Management and Cost Growth, MILCON and Military Construction by Progressive Management
Cover of the book A Comprehensive Approach to Improving U.S. Security Force Assistance (SFA) Efforts - DoD Programs to Train, Advise, and Assist Foreign Partners' Security Establishments by Progressive Management
Cover of the book Central Valley Project: Bureau of Reclamation Reports on San Luis Unit, Auburn Dam, Corps of Engineers, Delta Division, Friant Division, Sacramento River Division, Shasta Division, Trinity Division by Progressive Management
Cover of the book 2014: The Future of American Airpower - America's Air Force: a Call to the Future, Agile USAF, Naval Aviation Vision 2014-2025, Air-Sea Battle, ISR, UCLASS, X-47B, F-35, 21st Century Deterrence by Progressive Management
Cover of the book America's Highways: History from 1776 to Modern Times: Early Turnpike Era, Roads, Canals, Motor Age, Scientific Roadbuilding, Federal Aid, National Defense, Interstate System, Bridges, Construction by Progressive Management
Cover of the book Operation Ranch Hand: The Air Force and Herbicides in Southeast Asia - 1961-1971 - Agent Orange, C-123, South Vietnam Defoliation Operations, Viet Cong, Crop Destruction, Health Effects, Mekong Delta by Progressive Management
Cover of the book NSA Codebreaking Secrets Revealed: It Wasn't All Magic - The Early Struggle to Automate Cryptanalysis 1930s-1960s - Alan Turing, Vannevar Bush, First Electronic Computers, World War II Codes by Progressive Management
Cover of the book China Policies and Controversies: U.S. Military Papers - PLA, Deception, Maritime Quest, Navy, Taiwan Arms Sales, Turkey and China, plus 2014 U.S. Intelligence Threat Assessment by Progressive Management
Cover of the book The Report of the Presidential Commission on the Space Shuttle Challenger Accident: The Tragedy of Mission 51-L in 1986 - Volume Three, Appendix O, Search, Recovery and Reconstruction Report by Progressive Management
Cover of the book Factors Shaping Japan's Foreign Policy Toward the Senkaku Islands: Chinese Encroachments and Domestic Japanese Politics, Leaders Koizumi, Abe, Ishihara and Noda, Constitution and International Law by Progressive Management
Cover of the book The Sources of Protracted Conflict in the Western Sahara: Algerian Hegemony, Spanish Decolonization, Ceasefire, UN Problems, Algeria and Polisario Front, SADR, Tindouf Region, Morocco, ISIS, al-Qaeda by Progressive Management
Cover of the book Military Air Refueling: Air Force Air Refueling for Naval Operations, History and Practice; Without Tankers, We Cannot; Flight of the Question Mark, KC-10, KC-135, Vietnam, War on Terror, Spaatz by Progressive Management
Cover of the book Air Force Strategy Study 2020-2030: Power Projection, Freedom of Action in Air, Space, and Cyberspace, Global Situational Awareness, Military Support for Civil Authorities by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy