Muscle Biophysics

From Molecules to Cells

Nonfiction, Science & Nature, Science, Biological Sciences, Biophysics, Biochemistry
Cover of the book Muscle Biophysics by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781441963666
Publisher: Springer New York Publication: September 8, 2010
Imprint: Springer Language: English
Author:
ISBN: 9781441963666
Publisher: Springer New York
Publication: September 8, 2010
Imprint: Springer
Language: English

Muscle contraction has been the focus of scientific investigation for more than two centuries, and major discoveries have changed the field over the years. Early in the twentieth century, Fenn (1924, 1923) showed that the total energy liberated during a contraction (heat + work) was increased when the muscle was allowed to shorten and perform work. The result implied that chemical reactions during contractions were load-dependent. The observation underlying the “Fenn effect” was taken to a greater extent when Hill (1938) published a pivotal study showing in details the relation between heat production and the amount of muscle shortening, providing investigators with the force-velocity relation for skeletal muscles. Subsequently, two papers paved the way for the current paradigm in the field of muscle contraction. Huxley and Niedergerke (1954), and Huxley and Hanson (1954) showed that the width of the A-bands did not change during muscle stretch or activation. Contraction, previously believed to be caused by shortening of muscle filaments, was associated with sliding of the thick and thin filaments. These studies were followed by the classic paper by Huxley (1957), in which he conceptualized for the first time the cross-bridge theory; filament sliding was driven by the cyclical interactions of myosin heads (cross-bridges) with actin. The original cross-bridge theory has been revised over the years but the basic features have remained mostly intact. It now influences studies performed with molecular motors responsible for tasks as diverse as muscle contraction, cell division and vesicle transport.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Muscle contraction has been the focus of scientific investigation for more than two centuries, and major discoveries have changed the field over the years. Early in the twentieth century, Fenn (1924, 1923) showed that the total energy liberated during a contraction (heat + work) was increased when the muscle was allowed to shorten and perform work. The result implied that chemical reactions during contractions were load-dependent. The observation underlying the “Fenn effect” was taken to a greater extent when Hill (1938) published a pivotal study showing in details the relation between heat production and the amount of muscle shortening, providing investigators with the force-velocity relation for skeletal muscles. Subsequently, two papers paved the way for the current paradigm in the field of muscle contraction. Huxley and Niedergerke (1954), and Huxley and Hanson (1954) showed that the width of the A-bands did not change during muscle stretch or activation. Contraction, previously believed to be caused by shortening of muscle filaments, was associated with sliding of the thick and thin filaments. These studies were followed by the classic paper by Huxley (1957), in which he conceptualized for the first time the cross-bridge theory; filament sliding was driven by the cyclical interactions of myosin heads (cross-bridges) with actin. The original cross-bridge theory has been revised over the years but the basic features have remained mostly intact. It now influences studies performed with molecular motors responsible for tasks as diverse as muscle contraction, cell division and vesicle transport.

More books from Springer New York

Cover of the book Topics in Numerical Partial Differential Equations and Scientific Computing by
Cover of the book Cognitive Radio Receiver Front-Ends by
Cover of the book Exterior Billiards by
Cover of the book Current Review of Minimally Invasive Surgery by
Cover of the book Reviews of Environmental Contamination and Toxicology by
Cover of the book Algebraic Combinatorics by
Cover of the book Chemical and Bioprocess Engineering by
Cover of the book EBNA1 and Epstein-Barr Virus Associated Tumours by
Cover of the book Laser Refractography by
Cover of the book Genetics and Genomics of Rice by
Cover of the book Systems Biology of Parkinson's Disease by
Cover of the book Perimenopause by
Cover of the book Optimization Approaches for Solving String Selection Problems by
Cover of the book Cell Death by
Cover of the book Disorders of the Neonatal Airway by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy