Multiple Time Series Modeling Using the SAS VARMAX Procedure

Nonfiction, Science & Nature, Mathematics, Statistics, Computers, Application Software
Cover of the book Multiple Time Series Modeling Using the SAS VARMAX Procedure by Anders Milhoj, SAS Institute
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Anders Milhoj ISBN: 9781629597478
Publisher: SAS Institute Publication: January 11, 2016
Imprint: SAS Institute Language: English
Author: Anders Milhoj
ISBN: 9781629597478
Publisher: SAS Institute
Publication: January 11, 2016
Imprint: SAS Institute
Language: English

Aimed at econometricians who have completed at least one course in time series modeling, Multiple Time Series Modeling Using the SAS VARMAX Procedure will teach you the time series analytical possibilities that SAS offers today. Estimations of model parameters are now performed in a split second. For this reason, working through the identifications phase to find the correct model is unnecessary. Instead, several competing models can be estimated, and their fit can be compared instantaneously. Consequently, for time series analysis, most of the Box and Jenkins analysis process for univariate series is now obsolete. The former days of looking at cross-correlations and pre-whitening are over, because distributed lag models are easily fitted by an automatic lag identification method. The same goes for bivariate and even multivariate models, for which PROC VARMAX models are automatically fitted. For these models, other interesting variations arise: Subjects like Granger causality testing, feedback, equilibrium, cointegration, and error correction are easily addressed by PROC VARMAX. One problem with multivariate modeling is that it includes many parameters, making parameterizations unstable. This instability can be compensated for by application of Bayesian methods, which are also incorporated in PROC VARMAX. Volatility modeling has now become a standard part of time series modeling, because of the popularity of GARCH models. Both univariate and multivariate GARCH models are supported by PROC VARMAX. This feature is especially interesting for financial analytics in which risk is a focus. This book teaches with examples. Readers who are analyzing a time series for the first time will find PROC VARMAX easy to use; readers who know more advanced theoretical time series models will discover that PROC VARMAX is a useful tool for advanced model building.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Aimed at econometricians who have completed at least one course in time series modeling, Multiple Time Series Modeling Using the SAS VARMAX Procedure will teach you the time series analytical possibilities that SAS offers today. Estimations of model parameters are now performed in a split second. For this reason, working through the identifications phase to find the correct model is unnecessary. Instead, several competing models can be estimated, and their fit can be compared instantaneously. Consequently, for time series analysis, most of the Box and Jenkins analysis process for univariate series is now obsolete. The former days of looking at cross-correlations and pre-whitening are over, because distributed lag models are easily fitted by an automatic lag identification method. The same goes for bivariate and even multivariate models, for which PROC VARMAX models are automatically fitted. For these models, other interesting variations arise: Subjects like Granger causality testing, feedback, equilibrium, cointegration, and error correction are easily addressed by PROC VARMAX. One problem with multivariate modeling is that it includes many parameters, making parameterizations unstable. This instability can be compensated for by application of Bayesian methods, which are also incorporated in PROC VARMAX. Volatility modeling has now become a standard part of time series modeling, because of the popularity of GARCH models. Both univariate and multivariate GARCH models are supported by PROC VARMAX. This feature is especially interesting for financial analytics in which risk is a focus. This book teaches with examples. Readers who are analyzing a time series for the first time will find PROC VARMAX easy to use; readers who know more advanced theoretical time series models will discover that PROC VARMAX is a useful tool for advanced model building.

More books from SAS Institute

Cover of the book Biostatistics Using JMP by Anders Milhoj
Cover of the book Getting Started with the Graph Template Language in SAS by Anders Milhoj
Cover of the book JMP for Basic Univariate and Multivariate Statistics by Anders Milhoj
Cover of the book SAS Certified Specialist Prep Guide by Anders Milhoj
Cover of the book JMP 14 Profilers by Anders Milhoj
Cover of the book Exchanging Data between SAS and Microsoft Excel by Anders Milhoj
Cover of the book SAS Programming with Medicare Administrative Data by Anders Milhoj
Cover of the book Modern Approaches to Clinical Trials Using SAS: Classical, Adaptive, and Bayesian Methods by Anders Milhoj
Cover of the book Applied Econometrics with SAS by Anders Milhoj
Cover of the book Data Quality for Analytics Using SAS by Anders Milhoj
Cover of the book Discovering Partial Least Squares with JMP by Anders Milhoj
Cover of the book JMP 14 Consumer Research by Anders Milhoj
Cover of the book JMP Start Statistics by Anders Milhoj
Cover of the book Exchanging Data From SAS to Excel by Anders Milhoj
Cover of the book Business Statistics Made Easy in SAS by Anders Milhoj
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy