Mathematical Statistics

An Introduction to Likelihood Based Inference

Nonfiction, Science & Nature, Mathematics, Statistics
Cover of the book Mathematical Statistics by Richard J. Rossi, Wiley
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Richard J. Rossi ISBN: 9781118771167
Publisher: Wiley Publication: June 14, 2018
Imprint: Wiley Language: English
Author: Richard J. Rossi
ISBN: 9781118771167
Publisher: Wiley
Publication: June 14, 2018
Imprint: Wiley
Language: English

Presents a unified approach to parametric estimation, confidence intervals, hypothesis testing, and statistical modeling, which are uniquely based on the likelihood function

This book addresses mathematical statistics for upper-undergraduates and first year graduate students, tying chapters on estimation, confidence intervals, hypothesis testing, and statistical models together to present a unifying focus on the likelihood function. It also emphasizes the important ideas in statistical modeling, such as sufficiency, exponential family distributions, and large sample properties. Mathematical Statistics: An Introduction to Likelihood Based Inference makes advanced topics accessible and understandable and covers many topics in more depth than typical mathematical statistics textbooks. It includes numerous examples, case studies, a large number of exercises ranging from drill and skill to extremely difficult problems, and many of the important theorems of mathematical statistics along with their proofs.

In addition to the connected chapters mentioned above, Mathematical Statistics covers likelihood-based estimation, with emphasis on multidimensional parameter spaces and range dependent support. It also includes a chapter on confidence intervals, which contains examples of exact confidence intervals along with the standard large sample confidence intervals based on the MLE's and bootstrap confidence intervals. There’s also a chapter on parametric statistical models featuring sections on non-iid observations, linear regression, logistic regression, Poisson regression, and linear models.

  • Prepares students with the tools needed to be successful in their future work in statistics data science
  • Includes practical case studies including real-life data collected from Yellowstone National Park, the Donner party, and the Titanic voyage
  • Emphasizes the important ideas to statistical modeling, such as sufficiency, exponential family distributions, and large sample properties
  • Includes sections on Bayesian estimation and credible intervals
  • Features examples, problems, and solutions

Mathematical Statistics: An Introduction to Likelihood Based Inference is an ideal textbook for upper-undergraduate and graduate courses in probability, mathematical statistics, and/or statistical inference.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Presents a unified approach to parametric estimation, confidence intervals, hypothesis testing, and statistical modeling, which are uniquely based on the likelihood function

This book addresses mathematical statistics for upper-undergraduates and first year graduate students, tying chapters on estimation, confidence intervals, hypothesis testing, and statistical models together to present a unifying focus on the likelihood function. It also emphasizes the important ideas in statistical modeling, such as sufficiency, exponential family distributions, and large sample properties. Mathematical Statistics: An Introduction to Likelihood Based Inference makes advanced topics accessible and understandable and covers many topics in more depth than typical mathematical statistics textbooks. It includes numerous examples, case studies, a large number of exercises ranging from drill and skill to extremely difficult problems, and many of the important theorems of mathematical statistics along with their proofs.

In addition to the connected chapters mentioned above, Mathematical Statistics covers likelihood-based estimation, with emphasis on multidimensional parameter spaces and range dependent support. It also includes a chapter on confidence intervals, which contains examples of exact confidence intervals along with the standard large sample confidence intervals based on the MLE's and bootstrap confidence intervals. There’s also a chapter on parametric statistical models featuring sections on non-iid observations, linear regression, logistic regression, Poisson regression, and linear models.

Mathematical Statistics: An Introduction to Likelihood Based Inference is an ideal textbook for upper-undergraduate and graduate courses in probability, mathematical statistics, and/or statistical inference.

More books from Wiley

Cover of the book Ukulele Exercises For Dummies, Enhanced Edition by Richard J. Rossi
Cover of the book Structured Credit Products by Richard J. Rossi
Cover of the book Engineering, Medicine and Science at the Nano-Scale by Richard J. Rossi
Cover of the book Professional Hadoop by Richard J. Rossi
Cover of the book WTF?: What's the Future of Business? by Richard J. Rossi
Cover of the book The Best of Windows 7 Secrets by Richard J. Rossi
Cover of the book Algebra für Dummies by Richard J. Rossi
Cover of the book Lead Optimization for Medicinal Chemists by Richard J. Rossi
Cover of the book Anatomy in Diagnostic Imaging by Richard J. Rossi
Cover of the book Critical Care Manual of Clinical Procedures and Competencies by Richard J. Rossi
Cover of the book Ökobilanz (LCA) by Richard J. Rossi
Cover of the book Exploring Diversity at Historically Black Colleges and Universities: Implications for Policy and Practice by Richard J. Rossi
Cover of the book Nanoparticulate Drug Delivery Systems by Richard J. Rossi
Cover of the book Everyday Teacher Leadership by Richard J. Rossi
Cover of the book SPSS Statistics for Data Analysis and Visualization by Richard J. Rossi
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy