Map ProjectionsTheory and Applications

Nonfiction, Science & Nature, Technology, Remote Sensing, Environmental
Cover of the book Map ProjectionsTheory and Applications by Frederick Pearson, II, CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Frederick Pearson, II ISBN: 9781351433693
Publisher: CRC Press Publication: April 27, 2018
Imprint: Routledge Language: English
Author: Frederick Pearson, II
ISBN: 9781351433693
Publisher: CRC Press
Publication: April 27, 2018
Imprint: Routledge
Language: English

About the Author: Frederick Pearson has extensive experience in teaching map projection at the Air Force Cartography School and Virginia Polytechnic Institute. He developed star charts, satellite trajectory programs, and a celestial navigation device for the Aeronautical Chart and Information Center. He is an expert in orbital analysis of satellites, and control and guidance systems. At McDonnell-Douglas, he worked on the guidance system for the space shuttle.

This text develops the plotting equations for the major map projections. The emphasis is on obtaining usable algorithms for computed aided plotting and CRT display. The problem of map projection is stated, and the basic terminology is introduced. The required fundamental mathematics is reviewed, and transformation theory is developed. Theories from differential geometry are particularized for the transformation from a sphere or spheroid as the model of the earth onto a selected plotting surface. The most current parameters to describe the figure of the earth are given. Formulas are included to calculate meridian length, parallel length, geodetic and geocentric latitude, azimuth, and distances on the sphere or spheroid. Equal area, conformal, and conventional projection transformations are derived. All result in direct transformation from geographic to cartesian coordinates. For selected projections, inverse transformations from cartesian to geographic coordinates are given. Since the avoidance of distortion is important, the theory of distortion is explored. Formulas are developed to give a quantitative estimate of linear, area, and angular distortions. Extended examples are given for several mapping problems of interest. Computer applications, and efficient algorithms are presented. This book is an appropriate text for a course in the mathematical aspects of mapping and cartography. Map projections are of interest to workers in many fields. Some of these are mathematicians, engineers, surveyors, geodi

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

About the Author: Frederick Pearson has extensive experience in teaching map projection at the Air Force Cartography School and Virginia Polytechnic Institute. He developed star charts, satellite trajectory programs, and a celestial navigation device for the Aeronautical Chart and Information Center. He is an expert in orbital analysis of satellites, and control and guidance systems. At McDonnell-Douglas, he worked on the guidance system for the space shuttle.

This text develops the plotting equations for the major map projections. The emphasis is on obtaining usable algorithms for computed aided plotting and CRT display. The problem of map projection is stated, and the basic terminology is introduced. The required fundamental mathematics is reviewed, and transformation theory is developed. Theories from differential geometry are particularized for the transformation from a sphere or spheroid as the model of the earth onto a selected plotting surface. The most current parameters to describe the figure of the earth are given. Formulas are included to calculate meridian length, parallel length, geodetic and geocentric latitude, azimuth, and distances on the sphere or spheroid. Equal area, conformal, and conventional projection transformations are derived. All result in direct transformation from geographic to cartesian coordinates. For selected projections, inverse transformations from cartesian to geographic coordinates are given. Since the avoidance of distortion is important, the theory of distortion is explored. Formulas are developed to give a quantitative estimate of linear, area, and angular distortions. Extended examples are given for several mapping problems of interest. Computer applications, and efficient algorithms are presented. This book is an appropriate text for a course in the mathematical aspects of mapping and cartography. Map projections are of interest to workers in many fields. Some of these are mathematicians, engineers, surveyors, geodi

More books from CRC Press

Cover of the book Higher Engineering Science by Frederick Pearson, II
Cover of the book Power System Protection in Smart Grid Environment by Frederick Pearson, II
Cover of the book Modelling Command and Control by Frederick Pearson, II
Cover of the book Contractual Procedures in the Construction Industry by Frederick Pearson, II
Cover of the book Patient-Centered Prescribing by Frederick Pearson, II
Cover of the book Handbook of Quantile Regression by Frederick Pearson, II
Cover of the book Essential Principles of Image Sensors by Frederick Pearson, II
Cover of the book A Practical Guide to Borehole Geophysics in Environmental Investigations by Frederick Pearson, II
Cover of the book Smart Things and Femtocells by Frederick Pearson, II
Cover of the book Return on Engagement by Frederick Pearson, II
Cover of the book LTE-Advanced Air Interface Technology by Frederick Pearson, II
Cover of the book Green Energy by Frederick Pearson, II
Cover of the book Analysis On Manifolds by Frederick Pearson, II
Cover of the book Tomato Diseases by Frederick Pearson, II
Cover of the book Physical Properties of Materials For Engineers by Frederick Pearson, II
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy