Managing Data From Knowledge Bases: Querying and Extraction

Nonfiction, Computers, Database Management, Information Storage & Retrievel, General Computing
Cover of the book Managing Data From Knowledge Bases: Querying and Extraction by Wei Emma Zhang, Quan Z. Sheng, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Wei Emma Zhang, Quan Z. Sheng ISBN: 9783319949352
Publisher: Springer International Publishing Publication: July 31, 2018
Imprint: Springer Language: English
Author: Wei Emma Zhang, Quan Z. Sheng
ISBN: 9783319949352
Publisher: Springer International Publishing
Publication: July 31, 2018
Imprint: Springer
Language: English

In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors study the query optimization and tackle the query performance prediction for knowledge retrieval. They also handle unstructured data processing, data clustering for knowledge extraction. To optimize the queries issued through interfaces against knowledge bases, the authors propose a cache-based optimization layer between consumers and the querying interface to facilitate the querying and solve the latency issue. The cache depends on a novel learning method that considers the querying patterns from individual’s historical queries without having knowledge of the backing systems of the knowledge base. To predict the query performance for appropriate query scheduling, the authors examine the queries’ structural and syntactical features and apply multiple widely adopted prediction models. Their feature modelling approach eschews the knowledge requirement on both the querying languages and system.

To extract knowledge from unstructured Web sources, the authors examine two kinds of Web sources containing unstructured data: the source code from Web repositories and the posts in programming question-answering communities. They use natural language processing techniques to pre-process the source codes and obtain the natural language elements. Then they apply traditional knowledge extraction techniques to extract knowledge. For the data from programming question-answering communities, the authors make the attempt towards building programming knowledge base by starting with paraphrase identification problems and develop novel features to accurately identify duplicate posts. For domain specific knowledge extraction, the authors propose to use clustering technique to separate knowledge into different groups. They focus on developing a new clustering algorithm that uses manifold constraint in the optimization task and achieves fast and accurate performance.

For each model and approach presented in this dissertation, the authors have conducted extensive experiments to evaluate it using either public dataset or synthetic data they generated.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors study the query optimization and tackle the query performance prediction for knowledge retrieval. They also handle unstructured data processing, data clustering for knowledge extraction. To optimize the queries issued through interfaces against knowledge bases, the authors propose a cache-based optimization layer between consumers and the querying interface to facilitate the querying and solve the latency issue. The cache depends on a novel learning method that considers the querying patterns from individual’s historical queries without having knowledge of the backing systems of the knowledge base. To predict the query performance for appropriate query scheduling, the authors examine the queries’ structural and syntactical features and apply multiple widely adopted prediction models. Their feature modelling approach eschews the knowledge requirement on both the querying languages and system.

To extract knowledge from unstructured Web sources, the authors examine two kinds of Web sources containing unstructured data: the source code from Web repositories and the posts in programming question-answering communities. They use natural language processing techniques to pre-process the source codes and obtain the natural language elements. Then they apply traditional knowledge extraction techniques to extract knowledge. For the data from programming question-answering communities, the authors make the attempt towards building programming knowledge base by starting with paraphrase identification problems and develop novel features to accurately identify duplicate posts. For domain specific knowledge extraction, the authors propose to use clustering technique to separate knowledge into different groups. They focus on developing a new clustering algorithm that uses manifold constraint in the optimization task and achieves fast and accurate performance.

For each model and approach presented in this dissertation, the authors have conducted extensive experiments to evaluate it using either public dataset or synthetic data they generated.

More books from Springer International Publishing

Cover of the book Environmental Perspectives by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Neoliberalism and the Changing Face of Unionism by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Gauge Invariance and Weyl-polymer Quantization by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Unconstitutional Solitude by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Conscious Business in Germany by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Submodularity in Dynamics and Control of Networked Systems by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Halogen Bonding II by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Contextual Cognition by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Swarm Robotics: A Formal Approach by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Women in Mathematics by Wei Emma Zhang, Quan Z. Sheng
Cover of the book The Vixen Star Book User Guide by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Swarm Intelligence Based Optimization by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Morphology of Electrochemically and Chemically Deposited Metals by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Database and Expert Systems Applications by Wei Emma Zhang, Quan Z. Sheng
Cover of the book Birational Geometry of Foliations by Wei Emma Zhang, Quan Z. Sheng
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy