Laser Scanning Systems in Highway and Safety Assessment

Analysis of Highway Geometry and Safety Using LiDAR

Nonfiction, Science & Nature, Technology, Environmental, Engineering, Civil
Cover of the book Laser Scanning Systems in Highway and Safety Assessment by Biswajeet Pradhan, Maher Ibrahim Sameen, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Biswajeet Pradhan, Maher Ibrahim Sameen ISBN: 9783030103743
Publisher: Springer International Publishing Publication: April 2, 2019
Imprint: Springer Language: English
Author: Biswajeet Pradhan, Maher Ibrahim Sameen
ISBN: 9783030103743
Publisher: Springer International Publishing
Publication: April 2, 2019
Imprint: Springer
Language: English

This book aims to promote the core understanding of a proper modelling of road traffic accidents by deep learning methods using traffic information and road geometry delineated from laser scanning data. The first two chapters of the book introduce the reader to laser scanning technology with creative explanation and graphical illustrations, review and recent methods of extracting geometric road parameters. The next three chapters present different machine learning and statistical techniques applied to extract road geometry information from laser scanning data. Chapters 6 and 7 present methods for modelling roadside features and automatic road geometry identification in vector data. After that, this book goes on reviewing methods used for road traffic accident modelling including accident frequency and injury severity of the traffic accident (Chapter 8). Then, the next chapter explores the details of neural networks and their performance in predicting the traffic accidents along with a comparison with common data mining models. Chapter 10 presents a novel hybrid model combining extreme gradient boosting and deep neural networks for predicting injury severity of road traffic accidents. This chapter is followed by deep learning applications in modelling accident data using feed-forward, convolutional, recurrent neural network models (Chapter 11). The final chapter (Chapter 12) presents a procedure for modelling traffic accident with little data based on the concept of transfer learning. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book aims to promote the core understanding of a proper modelling of road traffic accidents by deep learning methods using traffic information and road geometry delineated from laser scanning data. The first two chapters of the book introduce the reader to laser scanning technology with creative explanation and graphical illustrations, review and recent methods of extracting geometric road parameters. The next three chapters present different machine learning and statistical techniques applied to extract road geometry information from laser scanning data. Chapters 6 and 7 present methods for modelling roadside features and automatic road geometry identification in vector data. After that, this book goes on reviewing methods used for road traffic accident modelling including accident frequency and injury severity of the traffic accident (Chapter 8). Then, the next chapter explores the details of neural networks and their performance in predicting the traffic accidents along with a comparison with common data mining models. Chapter 10 presents a novel hybrid model combining extreme gradient boosting and deep neural networks for predicting injury severity of road traffic accidents. This chapter is followed by deep learning applications in modelling accident data using feed-forward, convolutional, recurrent neural network models (Chapter 11). The final chapter (Chapter 12) presents a procedure for modelling traffic accident with little data based on the concept of transfer learning. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.

More books from Springer International Publishing

Cover of the book Complications of Regional Anesthesia by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book China and Africa by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Power, Culture and Situated Research Methodology by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Engineering Geology for Society and Territory - Volume 4 by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Quantitative Psychology by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Reasoning Web. Web Logic Rules by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Integral Methods in Science and Engineering by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Obstetrics in Family Medicine by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Continuous Software Engineering by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Stratonauts by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Global and Regional Leadership of BRICS Countries by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Novel Immunotherapeutic Approaches to the Treatment of Cancer by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Polynomial Chaos Methods for Hyperbolic Partial Differential Equations by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Optimization and Applications by Biswajeet Pradhan, Maher Ibrahim Sameen
Cover of the book Differential Privacy and Applications by Biswajeet Pradhan, Maher Ibrahim Sameen
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy