Author: | Alexey Kondyurin, Marcela Bilek | ISBN: | 9780080999180 |
Publisher: | Elsevier Science | Publication: | September 25, 2014 |
Imprint: | Elsevier | Language: | English |
Author: | Alexey Kondyurin, Marcela Bilek |
ISBN: | 9780080999180 |
Publisher: | Elsevier Science |
Publication: | September 25, 2014 |
Imprint: | Elsevier |
Language: | English |
Ion Beam Treatment of Polymers, Second Edition presents the results of polymer investigations and technique development in the field of polymer modification by high-energy ion beams. It shows how to use ion beam equipment in the polymer industry, as well as how to use it to produce new polymer materials. The authors, scientists and researchers active in the field, provide analysis and data from their work, and give an overview of related work by others. The authors focus on wetting, adhesion, hardness, chemical activity, environmental stability, biocompatibility, new synthesis methods, and space flight construction.
The technologies of material modification by a beam of high energy ions have wide applications in different fields, from microelectronics to medicine. Historically, ion beam treatment of polymers had fewer applications due to high costs of ion beam equipment and low costs of polymer materials. The modern development of new pulse sources with a high current density and wide ion beams increase the effectiveness of ion beam technology for polymers.
Ion Beam Treatment of Polymers, Second Edition presents the results of polymer investigations and technique development in the field of polymer modification by high-energy ion beams. It shows how to use ion beam equipment in the polymer industry, as well as how to use it to produce new polymer materials. The authors, scientists and researchers active in the field, provide analysis and data from their work, and give an overview of related work by others. The authors focus on wetting, adhesion, hardness, chemical activity, environmental stability, biocompatibility, new synthesis methods, and space flight construction.
The technologies of material modification by a beam of high energy ions have wide applications in different fields, from microelectronics to medicine. Historically, ion beam treatment of polymers had fewer applications due to high costs of ion beam equipment and low costs of polymer materials. The modern development of new pulse sources with a high current density and wide ion beams increase the effectiveness of ion beam technology for polymers.