Investigation into High Efficiency Visible Light Photocatalysts for Water Reduction and Oxidation

Nonfiction, Science & Nature, Science, Chemistry, Physical & Theoretical, Technical & Industrial
Cover of the book Investigation into High Efficiency Visible Light Photocatalysts for Water Reduction and Oxidation by David James Martin, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: David James Martin ISBN: 9783319184883
Publisher: Springer International Publishing Publication: May 14, 2015
Imprint: Springer Language: English
Author: David James Martin
ISBN: 9783319184883
Publisher: Springer International Publishing
Publication: May 14, 2015
Imprint: Springer
Language: English

This thesis describes novel strategies for the rational design of several cutting-edge high-efficiency photocatalysts, for applications such as water photooxidation, reduction, and overall splitting using a Z-Scheme system. As such, it focuses on efficient strategies for reducing energy loss by controlling charge transfer and separation, including novel faceted forms of silver phosphate for water photooxidation at record high rates, surface-basic highly polymerised graphitic carbon nitride for extremely efficient hydrogen production, and the first example of overall water splitting using a graphitic carbon nitride-based Z-Scheme system.

Photocatalytic water splitting using solar irradiation can potentially offer a zero-carbon renewable energy source, yielding hydrogen and oxygen as clean products. These two ‘solar’ products can be used directly in fuel cells or combustion to provide clean electricity or other energy. Alternatively they can be utilised as separate entities for feedstock-based reactions, and are considered to be the two cornerstones of hydrogenation and oxidation reactions, including the production of methanol as a safe/portable fuel, or conventional catalytic reactions such as Fischer-Tropsch synthesis and ethylene oxide production.

The main driving force behind the investigation is the fact that no photocatalyst system has yet reported combined high efficiency, high stability, and cost effectiveness; though cheap and stable, most suffer from low efficiency.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This thesis describes novel strategies for the rational design of several cutting-edge high-efficiency photocatalysts, for applications such as water photooxidation, reduction, and overall splitting using a Z-Scheme system. As such, it focuses on efficient strategies for reducing energy loss by controlling charge transfer and separation, including novel faceted forms of silver phosphate for water photooxidation at record high rates, surface-basic highly polymerised graphitic carbon nitride for extremely efficient hydrogen production, and the first example of overall water splitting using a graphitic carbon nitride-based Z-Scheme system.

Photocatalytic water splitting using solar irradiation can potentially offer a zero-carbon renewable energy source, yielding hydrogen and oxygen as clean products. These two ‘solar’ products can be used directly in fuel cells or combustion to provide clean electricity or other energy. Alternatively they can be utilised as separate entities for feedstock-based reactions, and are considered to be the two cornerstones of hydrogenation and oxidation reactions, including the production of methanol as a safe/portable fuel, or conventional catalytic reactions such as Fischer-Tropsch synthesis and ethylene oxide production.

The main driving force behind the investigation is the fact that no photocatalyst system has yet reported combined high efficiency, high stability, and cost effectiveness; though cheap and stable, most suffer from low efficiency.

More books from Springer International Publishing

Cover of the book Emerging Therapies in Neurorehabilitation II by David James Martin
Cover of the book Information Security and Cryptology by David James Martin
Cover of the book Bench Scale Calorimetry in Chemical Reaction Kinetics by David James Martin
Cover of the book Analysis and Presentation of Experimental Results by David James Martin
Cover of the book Algebra by David James Martin
Cover of the book Mapping Versatile Boundaries by David James Martin
Cover of the book Regional Energy Demand and Energy Efficiency in Japan by David James Martin
Cover of the book Income Modeling and Balancing by David James Martin
Cover of the book Handbook of Social Skills and Autism Spectrum Disorder by David James Martin
Cover of the book North American Strategic Defense in the 21st Century: by David James Martin
Cover of the book Industrial Internet of Things by David James Martin
Cover of the book Rigid Geometry of Curves and Their Jacobians by David James Martin
Cover of the book Yeasts in Natural Ecosystems: Diversity by David James Martin
Cover of the book Principle and Application Progress in Location-Based Services by David James Martin
Cover of the book Financing Basic Income by David James Martin
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy