Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow

Nonfiction, Science & Nature, Mathematics, Differential Equations, Science, Physics, Mathematical Physics
Cover of the book Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow by Hamid Bellout, Frederick Bloom, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Hamid Bellout, Frederick Bloom ISBN: 9783319008912
Publisher: Springer International Publishing Publication: November 19, 2013
Imprint: Birkhäuser Language: English
Author: Hamid Bellout, Frederick Bloom
ISBN: 9783319008912
Publisher: Springer International Publishing
Publication: November 19, 2013
Imprint: Birkhäuser
Language: English

The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, which a priori simplifies and restricts the relationship between the stress tensor and the velocity. By relaxing the constraints of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes the standard Navier-Stokes model. The rigorous theory of multipolar viscous fluids  is compatible with all known thermodynamical processes and the principle of material frame indifference; this is in contrast with the formulation of most non-Newtonian fluid flow models which result from ad hoc assumptions about the relation between the stress tensor and the velocity. The higher-order boundary conditions, which must be formulated for multipolar viscous flow problems, are a rigorous consequence of the principle of virtual work; this is in stark contrast to the approach employed by authors who have studied the regularizing effects of adding artificial viscosity, in the form of higher order spatial derivatives, to the Navier-Stokes model.
 
A number of research groups, primarily in the United States, Germany, Eastern Europe, and China, have explored the consequences of multipolar viscous fluid models; these efforts, and those of the authors, which are described in this book, have focused on the solution of problems in the context of specific geometries, on the existence of weak and classical solutions, and on dynamical systems aspects of the theory.
 
This volume will be a valuable resource for mathematicians interested in solutions to systems of nonlinear partial differential equations, as well as to applied mathematicians, fluid dynamicists, and mechanical engineers with an interest in the problems of fluid mechanics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, which a priori simplifies and restricts the relationship between the stress tensor and the velocity. By relaxing the constraints of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes the standard Navier-Stokes model. The rigorous theory of multipolar viscous fluids  is compatible with all known thermodynamical processes and the principle of material frame indifference; this is in contrast with the formulation of most non-Newtonian fluid flow models which result from ad hoc assumptions about the relation between the stress tensor and the velocity. The higher-order boundary conditions, which must be formulated for multipolar viscous flow problems, are a rigorous consequence of the principle of virtual work; this is in stark contrast to the approach employed by authors who have studied the regularizing effects of adding artificial viscosity, in the form of higher order spatial derivatives, to the Navier-Stokes model.
 
A number of research groups, primarily in the United States, Germany, Eastern Europe, and China, have explored the consequences of multipolar viscous fluid models; these efforts, and those of the authors, which are described in this book, have focused on the solution of problems in the context of specific geometries, on the existence of weak and classical solutions, and on dynamical systems aspects of the theory.
 
This volume will be a valuable resource for mathematicians interested in solutions to systems of nonlinear partial differential equations, as well as to applied mathematicians, fluid dynamicists, and mechanical engineers with an interest in the problems of fluid mechanics.

More books from Springer International Publishing

Cover of the book Numbers and Computers by Hamid Bellout, Frederick Bloom
Cover of the book Short Stay Management of Atrial Fibrillation by Hamid Bellout, Frederick Bloom
Cover of the book Energy Conversion in Natural and Artificial Photosynthesis by Hamid Bellout, Frederick Bloom
Cover of the book Synthesizable VHDL Design for FPGAs by Hamid Bellout, Frederick Bloom
Cover of the book The Era of Internet of Things by Hamid Bellout, Frederick Bloom
Cover of the book Religious Freedom at Risk by Hamid Bellout, Frederick Bloom
Cover of the book A Journey through Manufacturing and Supply Chain Strategy Research by Hamid Bellout, Frederick Bloom
Cover of the book Transnational Contexts of Culture, Gender, Class, and Colonialism in Play by Hamid Bellout, Frederick Bloom
Cover of the book The Parasite Chronicles by Hamid Bellout, Frederick Bloom
Cover of the book Narrative Policy Analysis by Hamid Bellout, Frederick Bloom
Cover of the book Big Data for the Greater Good by Hamid Bellout, Frederick Bloom
Cover of the book Photoptics 2015 by Hamid Bellout, Frederick Bloom
Cover of the book Nanobiotechnology in Bioformulations by Hamid Bellout, Frederick Bloom
Cover of the book Evolutionary Equations with Applications in Natural Sciences by Hamid Bellout, Frederick Bloom
Cover of the book Positive Systems by Hamid Bellout, Frederick Bloom
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy