Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow

Nonfiction, Science & Nature, Mathematics, Differential Equations, Science, Physics, Mathematical Physics
Cover of the book Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow by Hamid Bellout, Frederick Bloom, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Hamid Bellout, Frederick Bloom ISBN: 9783319008912
Publisher: Springer International Publishing Publication: November 19, 2013
Imprint: Birkhäuser Language: English
Author: Hamid Bellout, Frederick Bloom
ISBN: 9783319008912
Publisher: Springer International Publishing
Publication: November 19, 2013
Imprint: Birkhäuser
Language: English

The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, which a priori simplifies and restricts the relationship between the stress tensor and the velocity. By relaxing the constraints of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes the standard Navier-Stokes model. The rigorous theory of multipolar viscous fluids  is compatible with all known thermodynamical processes and the principle of material frame indifference; this is in contrast with the formulation of most non-Newtonian fluid flow models which result from ad hoc assumptions about the relation between the stress tensor and the velocity. The higher-order boundary conditions, which must be formulated for multipolar viscous flow problems, are a rigorous consequence of the principle of virtual work; this is in stark contrast to the approach employed by authors who have studied the regularizing effects of adding artificial viscosity, in the form of higher order spatial derivatives, to the Navier-Stokes model.
 
A number of research groups, primarily in the United States, Germany, Eastern Europe, and China, have explored the consequences of multipolar viscous fluid models; these efforts, and those of the authors, which are described in this book, have focused on the solution of problems in the context of specific geometries, on the existence of weak and classical solutions, and on dynamical systems aspects of the theory.
 
This volume will be a valuable resource for mathematicians interested in solutions to systems of nonlinear partial differential equations, as well as to applied mathematicians, fluid dynamicists, and mechanical engineers with an interest in the problems of fluid mechanics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, which a priori simplifies and restricts the relationship between the stress tensor and the velocity. By relaxing the constraints of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes the standard Navier-Stokes model. The rigorous theory of multipolar viscous fluids  is compatible with all known thermodynamical processes and the principle of material frame indifference; this is in contrast with the formulation of most non-Newtonian fluid flow models which result from ad hoc assumptions about the relation between the stress tensor and the velocity. The higher-order boundary conditions, which must be formulated for multipolar viscous flow problems, are a rigorous consequence of the principle of virtual work; this is in stark contrast to the approach employed by authors who have studied the regularizing effects of adding artificial viscosity, in the form of higher order spatial derivatives, to the Navier-Stokes model.
 
A number of research groups, primarily in the United States, Germany, Eastern Europe, and China, have explored the consequences of multipolar viscous fluid models; these efforts, and those of the authors, which are described in this book, have focused on the solution of problems in the context of specific geometries, on the existence of weak and classical solutions, and on dynamical systems aspects of the theory.
 
This volume will be a valuable resource for mathematicians interested in solutions to systems of nonlinear partial differential equations, as well as to applied mathematicians, fluid dynamicists, and mechanical engineers with an interest in the problems of fluid mechanics.

More books from Springer International Publishing

Cover of the book The Olive Tree Genome by Hamid Bellout, Frederick Bloom
Cover of the book Global Versus Local Perspectives on Finance and Accounting by Hamid Bellout, Frederick Bloom
Cover of the book Sovereign Debt by Hamid Bellout, Frederick Bloom
Cover of the book Hadron Structure in Electroweak Precision Measurements by Hamid Bellout, Frederick Bloom
Cover of the book Silver Nanoparticle Applications by Hamid Bellout, Frederick Bloom
Cover of the book Visionary Women and Visible Children, England 1900-1920 by Hamid Bellout, Frederick Bloom
Cover of the book Berichte zur Resistenzmonitoringstudie 2010/2011 by Hamid Bellout, Frederick Bloom
Cover of the book Interactive Theorem Proving by Hamid Bellout, Frederick Bloom
Cover of the book Development Aid and Sustainable Economic Growth in Africa by Hamid Bellout, Frederick Bloom
Cover of the book Jaya: An Advanced Optimization Algorithm and its Engineering Applications by Hamid Bellout, Frederick Bloom
Cover of the book The Morality of Weapons Research by Hamid Bellout, Frederick Bloom
Cover of the book Queen Caroline and Sir William Gell by Hamid Bellout, Frederick Bloom
Cover of the book Economic and Social Development of the Southern and Eastern Mediterranean Countries by Hamid Bellout, Frederick Bloom
Cover of the book The Sudoku Effect: Universities in the Vicious Circle of Bureaucracy by Hamid Bellout, Frederick Bloom
Cover of the book Multi-scale Quantitative Diagenesis and Impacts on Heterogeneity of Carbonate Reservoir Rocks by Hamid Bellout, Frederick Bloom
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy