Homological Mirror Symmetry and Tropical Geometry

Nonfiction, Science & Nature, Mathematics, Geometry
Cover of the book Homological Mirror Symmetry and Tropical Geometry by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319065144
Publisher: Springer International Publishing Publication: October 7, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319065144
Publisher: Springer International Publishing
Publication: October 7, 2014
Imprint: Springer
Language: English

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.

More books from Springer International Publishing

Cover of the book Rhythm, Play and Interaction Design by
Cover of the book Software Engineering and Formal Methods by
Cover of the book Approaching the Kannan-Lovász-Simonovits and Variance Conjectures by
Cover of the book Advances in Neural Networks - ISNN 2017 by
Cover of the book Numerical Software Verification by
Cover of the book Phenomenology of Space and Time by
Cover of the book Diagnostic Techniques in Industrial Engineering by
Cover of the book Clinical Informatics Study Guide by
Cover of the book Citizen Activism and Mediterranean Identity by
Cover of the book Ubiquitous Computing and Ambient Intelligence by
Cover of the book Sensors for Everyday Life by
Cover of the book Biomimetic Design Method for Innovation and Sustainability by
Cover of the book Vegetation Survey and Classification of Subtropical Forests of Southern Africa by
Cover of the book Algorithms and Discrete Applied Mathematics by
Cover of the book Algae Biomass: Characteristics and Applications by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy