Homological Mirror Symmetry and Tropical Geometry

Nonfiction, Science & Nature, Mathematics, Geometry
Cover of the book Homological Mirror Symmetry and Tropical Geometry by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319065144
Publisher: Springer International Publishing Publication: October 7, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319065144
Publisher: Springer International Publishing
Publication: October 7, 2014
Imprint: Springer
Language: English

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.

More books from Springer International Publishing

Cover of the book Characterization of Metals and Alloys by
Cover of the book Biblical Principles of Being an Employee in Contemporary Organizations by
Cover of the book Early Childhood and Development Work by
Cover of the book Biology and Biotechnology of Patagonian Microorganisms by
Cover of the book Machine Learning Paradigms by
Cover of the book What Does it Mean to be an Empiricist? by
Cover of the book Asymptotic Integration of Differential and Difference Equations by
Cover of the book Graph Drawing and Network Visualization by
Cover of the book The Internal Structure of U. S. Consumption Expenditures by
Cover of the book Trusted Computing Platforms by
Cover of the book Sustainable Risk Management by
Cover of the book Adaptation in Visual Culture by
Cover of the book Probability Based High Temperature Engineering by
Cover of the book Geological Records of the Fuegian Andes Deformed Complex Framed in a Patagonian Orogenic Belt Regional Context by
Cover of the book High Performance Computing and Applications by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy