Groups, Matrices, and Vector Spaces

A Group Theoretic Approach to Linear Algebra

Nonfiction, Science & Nature, Mathematics, Geometry, Algebra
Cover of the book Groups, Matrices, and Vector Spaces by James B. Carrell, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: James B. Carrell ISBN: 9780387794280
Publisher: Springer New York Publication: September 2, 2017
Imprint: Springer Language: English
Author: James B. Carrell
ISBN: 9780387794280
Publisher: Springer New York
Publication: September 2, 2017
Imprint: Springer
Language: English

This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group.

Applications involving symm

etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material.  Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group.

Applications involving symm

etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material.  Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.

More books from Springer New York

Cover of the book Genomic Applications in Pathology by James B. Carrell
Cover of the book Breast Cancer by James B. Carrell
Cover of the book Reviews of Environmental Contamination and Toxicology Volume 210 by James B. Carrell
Cover of the book Theory and Practice of Metal Electrodeposition by James B. Carrell
Cover of the book Analytic Number Theory, Approximation Theory, and Special Functions by James B. Carrell
Cover of the book Calculus With Applications by James B. Carrell
Cover of the book Encephalitis Lethargica by James B. Carrell
Cover of the book Advanced Control of Turbofan Engines by James B. Carrell
Cover of the book Digital Fingerprinting by James B. Carrell
Cover of the book Handbook of Computational Approaches to Counterterrorism by James B. Carrell
Cover of the book Gaia’s Body by James B. Carrell
Cover of the book Opacity by James B. Carrell
Cover of the book Coronary Artery CTA by James B. Carrell
Cover of the book Bergey's Manual of Systematic Bacteriology by James B. Carrell
Cover of the book Autophagy and Cancer by James B. Carrell
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy