General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions

Nonfiction, Science & Nature, Science, Other Sciences, System Theory, Mathematics, Calculus, Reference & Language, Reference
Cover of the book General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions by Xu Zhang, Qi Lü, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Xu Zhang, Qi Lü ISBN: 9783319066325
Publisher: Springer International Publishing Publication: June 2, 2014
Imprint: Springer Language: English
Author: Xu Zhang, Qi Lü
ISBN: 9783319066325
Publisher: Springer International Publishing
Publication: June 2, 2014
Imprint: Springer
Language: English

The classical Pontryagin maximum principle (addressed to deterministic finite dimensional control systems) is one of the three milestones in modern control theory. The corresponding theory is by now well-developed in the deterministic infinite dimensional setting and for the stochastic differential equations. However, very little is known about the same problem but for controlled stochastic (infinite dimensional) evolution equations when the diffusion term contains the control variables and the control domains are allowed to be non-convex. Indeed, it is one of the longstanding unsolved problems in stochastic control theory to establish the Pontryagin type maximum principle for this kind of general control systems: this book aims to give a solution to this problem. This book will be useful for both beginners and experts who are interested in optimal control theory for stochastic evolution equations.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The classical Pontryagin maximum principle (addressed to deterministic finite dimensional control systems) is one of the three milestones in modern control theory. The corresponding theory is by now well-developed in the deterministic infinite dimensional setting and for the stochastic differential equations. However, very little is known about the same problem but for controlled stochastic (infinite dimensional) evolution equations when the diffusion term contains the control variables and the control domains are allowed to be non-convex. Indeed, it is one of the longstanding unsolved problems in stochastic control theory to establish the Pontryagin type maximum principle for this kind of general control systems: this book aims to give a solution to this problem. This book will be useful for both beginners and experts who are interested in optimal control theory for stochastic evolution equations.

More books from Springer International Publishing

Cover of the book Fear and Uncertainty in Europe by Xu Zhang, Qi Lü
Cover of the book Agile Methods by Xu Zhang, Qi Lü
Cover of the book Applied Evaluative Informetrics by Xu Zhang, Qi Lü
Cover of the book Simulation-Based Analysis of Energy and Carbon Emissions in the Housing Sector by Xu Zhang, Qi Lü
Cover of the book Modeling Discrete-Event Systems with GPenSIM by Xu Zhang, Qi Lü
Cover of the book Astrophysics of Exoplanetary Atmospheres by Xu Zhang, Qi Lü
Cover of the book Portfolio Analytics by Xu Zhang, Qi Lü
Cover of the book Thermodynamics, Diffusion and the Kirkendall Effect in Solids by Xu Zhang, Qi Lü
Cover of the book Heat Transfer Modeling by Xu Zhang, Qi Lü
Cover of the book Hydrogeology of Plains by Xu Zhang, Qi Lü
Cover of the book Advances on Broad-Band Wireless Computing, Communication and Applications by Xu Zhang, Qi Lü
Cover of the book Evolution of Silicon Sensor Technology in Particle Physics by Xu Zhang, Qi Lü
Cover of the book Intelligence and Security Informatics by Xu Zhang, Qi Lü
Cover of the book Medical Sociology in Africa by Xu Zhang, Qi Lü
Cover of the book Predictive Maintenance in Dynamic Systems by Xu Zhang, Qi Lü
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy